| ROSES | | | | | 1 | la | | |----------------------|---|-------------------------------|------------------------------|-------------------------|---|--------------------|---| | year | Solicitation or Program Element Title | Submitted | Selected* | | | K\$/Yr | Notes * Selected means *encouraged* or *invited* for Step-1 proposals, depending. It has no meaning for NOts. | | | Astrophysics Data Analysis
Astrophysics Research and Analysis
Astrophysics Theory Program | see notes
see notes
236 | see notes
see notes
52 | see notes | Astrophysics
Astrophysics
Astrophysics | | Not Solicited This Year. See Second Astrophysics Data Analysis in 2018 Not Solicited This Year | | 2019
2019 | Swift Guest Investigator - Cycle 16 Fermi Guest Investigator - Cycle 13 | 120
110 | 44 | 37% | Astrophysics
Astrophysics | | selections pending | | 2019 | Strategic Astrophysics Technology Nancy Grace Roman Technology Fellowships NuSTAR General Observer - Cycle 6 | see notes
2
173 | see notes
2 | see notes
100% | Astrophysics
Astrophysics
Astrophysics | | Not Solicited This Year selections pending | | 2019
2019 | NUSTAN General Observer - Cycle 3 NICER Guest Observer - Cycle 2 | 155
91 | | | Astrophysics
Astrophysics | | selections pending selections pending selections pending | | 2019
2019 | Astrophysics Science SmallSat Studies
System-Level Segmented Telescope Design - Technology Maturation | 32
3 | | | Astrophysics
Astrophysics | | selections pending
selections pending | | 2019 | Land Cover Land Use Change Step-1
Land Cover Land Use Change Step-2 | 30
25 | 29 | N/A | Earth Science
Earth Science | | Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 Step-2 proposals were submitted 03/03/2020 | | 2019 | Physical Oceanography Ocean Salinity Science Team Sea Level Change Science Team | 40
30
15 | 8
11 | 20%
37% | Earth Science
Earth Science
Earth Science | | 6 full selections 2 partial selections One declined as non compliant. Two partial selections included in the 11/30 Selections are imminent in April | | 2019
2019 | Surface Water and Ocean Topography Science Team Modeling Analysis and Prediction | 68
19 | 10 | 53% | Earth Science | | Proposals were submitted 11/21/2019 Selections are imminent in April | | 2019 | Aura Science Team
Terrestrial Hydrology
The Soil Molsture Active-Passive Mission Science Team | 66
53
103 | 17 | 26% | Earth Science
Earth Science
Earth Science | | Includes one partial selection. One remains selectable early April Proposals were submitted 11114/2019 Proposals were submitted 07171/2019 | | 2019
2019 | Weather and Atmospheric Dynamics Earth Surface and Interior | 85
60 | 20
14 | 24%
23% | Earth Science
Earth Science | | 1 reposited were addressed over 1 rade to | | 2019 | GRACE-FO Science Team Rapid Response and Novel Research in Earth Science Arborne Instrument Technology Transition | 38
6
14 | 4 | 55%
67%
29% | Earth Science
Earth Science
Earth Science | | | | 2019 | Interdisciplinary Research in Earth Science Farth Science Research from Operational Geostationary Satellite Systems | 118
152 | | | Earth Science
Earth Science | | Proposals were submitted 11/15/2019
1/10/20 | | 2019 | ICESat-2 Research
Global Navigation Satellite System Research
PACE Science and Applications Team | 96
24
52 | 24 | 25% | Earth Science
Earth Science
Earth Science | | Proposals were submitted 08/30/2019
Includes 6 partial selections. | | 2019
2019 | Understanding Changes in High Mountain Asia Advancing Collaborative Connections for Earth System Science | 38
72 | 4 | 11% | Earth Science
Earth Science | | Proposals were submitted 1/30/20 | | 2019
2019 | Instrument Incubator Program Sustainable Land Imaging - Technology Utilization of Airborne L- and S- Band Synthetic Aperture Radar Imagery over North | 70
45 | 19 | 27% | Earth Science
Earth Science
Earth Science | | proposals are due 04/14/2020
2 were declined as non compliant | | 2019 | Decadal Survey Incubation Study Teams: Planetary Boundary Layer and Surface Topography | 62 | 25 | 40% | Earth Science | | | | 2019
2019
2019 | Heliophysics Supporting Research Step-1
Heliophysics Supporting Research Step-2
Heliophysics Theory, Modeling, and Simulations Step-1 | 140
122
64 | 140 | N/A
N/A | Heliophysics
Heliophysics
Heliophysics | | Step-1 all "Invited" S-2 proposals were submitted 10/18/2019 Step-1 all "Invited" | | 2019
2019 | Heliophysics Theory, Modeling, and Simulations Step-2
Heliophysics Guest Investigators Open Step-1 | 54
146 | 146 | N/A | Heliophysics
Heliophysics | | S-2 proposals were submitted 12/10/2019
Step-1 all "Invited" | | 2019
2019 | Heliophysics Guest Investigators Open Step-2
Heliophysics Living With a Star Science Step-1
Heliophysics Living With a Star Science Step-2 | 128
73
65 | 30
73 | 23%
N/A | Heliophysics
Heliophysics
Heliophysics | | 8 declined as non compliant Step-1 all "Invited" Step-1 services as non-compliant Step-1 all "Invited" | | 2019
2019 | Space Weather Science Applications Operations 2 Research Step-1 Space Weather Science Applications Operations 2 Research Step-2 | 56
48 | 56 | N/A | Heliophysics
Heliophysics | | 3½ proposals were submitted 2/12/2020
Step-1 all "Invited"
S-2 proposals were submitted 2/13/2020 | | 2019
2019 | Heliophysics Technology and Instrument Development for Science Heliophysics Flight Opportunities for Research and Technology Living With a Start Strategic Capabilities | 31
42
see notes | 12
see notes | 39%
see notes | Heliophysics
Heliophysics
Heliophysics | | proposals were submitted 11/08/2019 Not solicited in ROSES-2019 | | 2019
2019 | Heliophysics Data Environment Emphasis Step-1
Heliophysics Data Environment Emphasis Step-2 | 18
15 | 18
11 | N/A
73% | Heliophysics
Heliophysics | | Step-1 all "Invited" | | 2019
2019
2019 | Heliophysics U.S. Participating Investigator Outer Heliosphere Guest Investigators Step-1 Outer Heliosphere Guest Investigators Step-2 | see notes
19
16 | see notes
18
5 | see notes
N/A
31% | Heliophysics
Heliophysics
Heliophysics | | Not solicited in ROSES-2019 One Step-1 was declined as non compliant One Step-2 was declined as non compliant | | 2019
2019 | Heliophysics System Observatory Data Support
Heliophysics System Observatory - Connect Step-1 | 6
17 | 4
17 | 67%
N/A | Heliophysics
Heliophysics | | Step-1 all "Invited" | | | Heliophysics System Observatory - Connect Step-2 Emerging Worlds Step-1 | 14 | 130 | N/A | Heliophysics
Planetary Science | | Proposals were submitted 03/13/2020 | | 2019
2019 | Emerging Worlds Step-2
Exobiology | 100
159 | 23
17 | 23%
11% | Planetary Science
Planetary Science | | 4 declined non compliant. Of those 23 selected 5 were partial selections. 7 declined non compliant. | | 2019 | Solar System Observations Step-1 Solar System Observations Step-2 Development and Advancement of Lunar Instrumentation Program Step-1 | 66
49
51 | 65
9
49 | N/A
18%
N/A | Planetary Science
Planetary Science
Planetary Science | | | | 2019
2019 | Development and Advancement of Lunar Instrumentation Program Step-2
Laboratory Analysis of Returned Samples Step-1 | 44
31 | 5
25 | 11%
N/A | Planetary Science
Planetary Science | | one declined non compliant | | 2019
2019
2019 | Laboratory Analysis of Returned Samples Step-2
Planetary Data Archiving, Restoration, and Tools Step-1
Planetary Data Archiving, Restoration, and Tools Step-2 | 23
144
112 | 6
139
18 | 26%
N/A
16% | Planetary Science
Planetary Science
Planetary Science | | Plus one partial selection. Two declined non compliant. | | 2019
2019 | Cassini Data Analysis Step-1
Cassini Data Analysis Step-2 | 85
61 | 85
18 | 100%
30% | Planetary Science
Planetary Science | | | | 2019 | New Frontiers Data Analysis
Planetary Science and Technology Through Analog Research Step-1
Planetary Science and Technology Through Analog Research Step-2 | 27
81
97 | 11
69 | 41%
N/A
11% | Planetary Science
Planetary Science
Planetary Science | | three selectabl as of 03/20/2020 | | 2019
2019 | Discovery Data Analysis Step-1
Discovery Data Analysis Step-2 | 57
43 | 56 | N/A | Planetary Science
Planetary Science | | Proposals submitted 11/01/2019 | | 2019
2019
2019 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-1
Planetary Instrument Concepts for the Advancement of Solar System Observations Step-2
Planetary Protection Research | 128
97
see notes | 116
see notes | N/A | Planetary Science
Planetary Science
Planetary Science | | proposals submitted 11/20/2019 Not solicited in ROSES-2019 | | 2019 | Planetary Major Equipment and Facilities: Stand-alone proposals Planetary Science Early Career Award Program | 35 | 6 | 17% | Planetary Science
Planetary Science | | | | 2019 | Development and Advancement of Lunar Instrumentation Program Step-1 Development and Advancement of Lunar Instrumentation Program Step-2 Interdisciplinary Consortis for Astrobiology Research Step-1 | 51
44
46 | 49 | N/A
N/A | Planetary
Science
Planetary Science
Planetary Science | | Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 | | 2019
2019 | Interdisciplinary Consortia for Astrobiology Research Step-2 Europa Clipper Gravity/Radio Science Team | 44 | | | Planetary Science
Planetary Science | | Step-2 proposals are due 4/17/2020
11 submitted for Team Lead, 33 submitted for Co-I | | 2019
2019
2019 | Akatsuki Participating Scientist Program Mandatory NOI
Akatsuki Participating Scientist Program Proposals
Mars 2020 Participating Scientist Program Mandatory NOI | 18
11
195 | N/A
N/A | N/A
N/A | Planetary Science
Planetary Science
Planetary Science | | Proposals submitted 1/31/2020 | | 2019 | Mars 2020 Participating Scientist Program Proposals | 120 | | | Planetary Science | | Proposals submitted 03/12/2020 | | 2019 | Exoplanets Research Program
Habitable Worlds Step-1
Habitable Worlds Step-2 | see notes
111
65 | see notes
70 | N/A | Cross Division
Cross Division
Cross Division | | not socied in ROSES-19 see Second Exoplanets Research Program in 2018 Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2 Step-2 proposals were submitted 11/21/2019 | | 2019 | Applied Information Systems Research Step-1 Applied Information Systems Research Step-2 | 21
797 | 18 | N/A | Cross Division
Cross Division | | Step-1 merely "encouraged" vs. discouraged, but all may proceed to submit a Step-2
Step-2 proposals are due 4/17/2020 | | | Future Investigators in NASA Earth and Space Science and Technology Astrophysics Data Analysis | 246 | 53 | 22% | Cross Division Astrophysics | 122 | Astro = 158, Earth = 341, Helio = 44, Planetary = 254 6 Declined as Non-Compliant. | | 2018
2018 | Second Astrophysics Data Analysis
Astrophysics Research and Analysis | 247
164 | 38
27 | 15%
16% | Astrophysics
Astrophysics | | This takes the place of the 2019 solicitation, it was added to ROSES-2018 to maintain the normal schedule
Plus 19 partial selections. Including partial selections the rate is 28%. Selectables remain as of early September | | | Astrophysics Science SmallSat Studies Astrophysics Theory Program Fermi Guest Investigator - Cycle 12 | 38
see notes
97 | 9
see notes
35 | 24%
see notes
36% | Astrophysics
Astrophysics
Astrophysics | 144 | Not Solicited This Year Number submitted based on Phase-1 via ARK RPS | | 2018
2018 | K2 Guest Observer - Cycle 7
LISA Preparatory Science | see notes
30 | see notes | see notes
N/A | Astrophysics
Astrophysics | | Not Solicited This Year
43 mandatory NOIs received. | | 2018
2018 | Nancy Grace Roman Technology Fellowships
NICER Guest Observer - Cycle 1
NuSTAR Guest Observer - Cycle 5 | 1
84
198 | 1
49
67 | 41% | Astrophysics
Astrophysics
Astrophysics | | Number submitted based on Phase-1 via ARK RPS Number submitted based on Phase-1 via ARK RPS | | 2018 | SOFIA Next Generation Instrumentation Strategic Astrophysics Technology Swift Guest Investigator - Cyde 15 | 6
30
141 | 0
12
22 | 0%
40% | Astrophysics
Astrophysics | | | | 2018 | Transiting Exoplanet Survey Satellite Cycle-2 | 151 | 37 | 25% | Astrophysics
Astrophysics | | Number submitted based on Phase-1 via ARK RPS
Number submitted based on Phase-1 via ARK RPS | | 2018 | Apollo Next Generation Sample Analysis Program
Astrodynamics in Support of Icy Worlds Missions Step-1
Astrodynamics in Support of Icy Worlds Missions Step-2 | 23
38
33 | 9
37 | 39%
N/A
12% | Planetary Science
Planetary Science
Planetary Science | 286
N/A | | | 2018
2018 | Cassini Data Analysis Step-1
Cassini Data Analysis Step-2 | 79
61 | 79
18 | N/A
30% | Planetary Science
Planetary Science | 121 | Plus one partial selection | | 2018
2018 | Cassini Data Analysis:PDS Cassini Data Release 54 Step-1 Cassini Data Analysis: PDS Cassini Data Release 54 Step-2 | 10
7
72 | 9
2
72 | | Planetary Science
Planetary Science
Planetary Science | N/A | | | 2018
2018 | Development and Advancement of Lunar Instrumentation Program Step-1 Development and Advancement of Lunar Instrumentation Program Step-2 Discovery Data Analysis Step-1 | 72
48
33 | 72
10
32 | N/A
21%
N/A | Planetary Science
Planetary Science | 1070
N/A | | | 2018
2018
2018 | Discovery Data Analysis Step-2 Emerging Worlds Step-1 Emerging Worlds Step-2 | 22
161
110 | 5
135
26 | 23%
N/A
24% | Planetary Science
Planetary Science
Planetary Science | 129
N/A
187 | plus one partial selection | | 2018
2018
2018 | Exobiology
Instrument Concepts for Europa Exploration 2 Step-1 | 156
49 | 24
48 | 15%
N/A | Planetary Science
Planetary Science | 215
N/A | | | 2018 | Korea Pathfinder Lunar Orbiter Participating Scientist Program Step-1 | 44
40
26 | 14
40
See notes | 32%
N/A | Planetary Science
Planetary Science
Planetary Science | 1020
N/A | Launch date delayed review postponed | | 2018 | Korea Pathfinder Lunar Orbiter Participating Scientist Program Step-2
Laboratory Analysis of Returned Samples Step-1
Laboratory Analysis of Returned Samples Step-2 | 33
26 | See notes
29
9 | N/A
35% | Planetary Science | N/A
299 | | | 2018
2018
2018 | Lunar Data Analysis Step-1
Lunar Data Analysis Step-2
Lunar Surface Instrument and Technology Payloads Step-1 | 66
37
69 | 63
9
61 | N/A
24%
N/A | Planetary Science
Planetary Science
Planetary Science | N/A
N/A | a couple selectables remain early 2020 | | 2018
2018 | Lunar Surface Instrument and Technology Payloads Step-2 Mars 2020 Returned Sample Science Participating Scientist Program | 51
54 | 12
10 | 24%
19% | Planetary Science
Planetary Science | | | | 2018
2018
2018 | Mars Data Analysis Step-1 Mare Data Analysis Step-2 | 160
103
75 | 129
23
66 | N/A
22%
N/A | Planetary Science
Planetary Science
Planetary Science | N/A
136
N/A | Plus one partial selection | | 2018
2018 | Maturation of instruments for Solar System Exploration Step-1 Maturation of instruments for Solar System Exploration Step-2 Maturation of instruments for Solar System Exploration Step-2 New Frontiers Data Analysis Step-1 | 55
44 | 6
34 | 11%
N/A | Planetary Science | 1000
N/A | | | 2018
2018
2018 | New Frontiers Data Analysis Step-2
Planetary Data Archiving, Restoration, and Tools Step-1
Planetary Data Archiving, Restoration, and Tools Step-2 | 25
122
91 | 9
113
16 | 36%
N/A
18% | Planetary Science
Planetary Science
Planetary Science | 129
N/A
157 | | | 2018
2018 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-1 Planetary Instrument Concepts for the Advancement of Solar System Observations Step-2 | 124
91 | 116
116 | N/A
12% | Planetary Science
Planetary Science | N/A
318 | | | 2018
2018
2018 | Planetary Major Equipment and Facilities Step-1
Planetary Major Equipment and Facilities Step-2
Planetary Mission Concept Studies | 22
11
54 | 14 | N/A | Planetary Science
Planetary Science
Planetary Science | N/A | 1-year awards only | | 2018
2018 | Planetary Protection Research Planetary Science and Technology Through Analog Research Step-1 | 35
N/A | 7
N/A | 20%
N/A | Planetary Science
Planetary Science | N/A | 6 remain selectable Not Solicited This Year | | 2018
2018
2018 | Planetary Science and Technology Through Analog Research Step-2
Scientific Exploration Subsurface Access Mechanism for Europa Technology Development Pro-
Scientific Exploration Subsurface Access Mechanism for Europa Technology Development Pro- | N/A
10
9 | N/A
10
5 | N/A
N/A
56% | Planetary Science
Planetary Science
Planetary Science | N/A
N/A
1087 | Not Solicited This Year | | 2018
2018 | Solar System Observations Step-1
Solar System Observations Step-2 | 82
66 | 81
10 | N/A
15% | Planetary Science
Planetary Science | N/A
146 | 10 selected as of May 29 includes two partial selections. Selectables remain. Proposals were not received until 04/02/2019 | | 2018
2018
2018 | Solar System Workings
Rosetta Data Analysis Step-1
Rosetta Data Analysis Step-2 | 338
26
23 | 74
26
7 | 22%
N/A
30% | Planetary Science
Planetary Science
Planetary Science | N/A
174 | Proposals were not received until 04/02/2019 | | 2018 | Exoplanets Research Program Step-1 | 152 | 151 | N/A | Cross Division | N/A | 1 late proposal returned without review | | 2018 | Exoplanets Research Program Step-2 | 117 | 16 | 14% | Cross Division | 159 | | | The control of | | | | | | | | |
--|--------------|---|------------|----------|------------|--|------------|--| | The content of | | Second Exoplanets Research Program Step-1
Second Exoplanets Research Program Step-2 | | | | | | This takes the place of the 2019 solicitation, it was added to ROSES-2018 to maintain the normal schedule because
As of October 2019 18 selected one of which was a partial selection, selectable proposals remain. This takes the pla | | | 2018 | Habitable Worlds Step-1
Habitable Worlds Step-2 | | | 17% | Cross Division | | | | | | Topical Workshops, Symposia, and Conferences | 52 | 38 | | Cross Division | | | | 10 10 10 10 10 10 10 10 | 2018
2018 | Ocean Salinity Field Campaign SPURS-2 Processing and Synthesis Earth Surface and Interior | 4
55 | 4
19 | | Earth Science
Earth Science | | | | 1 | 2018 | Sustaining Living Systems in a Time of Climate Variability and Change | | | | Farth Science | | | | 1.0 | 2018 | Precipitation Measurement Missions (PMM) Science Team | | | 31%
21% | Farth Science | | | | 1. | 2018 | Earth Science U.S. Participating Investigator | 26 | 8 | 31% | Earth Science | 100 | The 8th was funded later by Physical Oceanography program funds | | 1 | 2018 | Earth Science Applications: Water Resources Step-1 | 106 | 49 | 46% | Earth Science | N/A | Thus four more posted calculations | | Company Comp | 2018 | Atmospheric Composition: Modeling and Analysis | 114 | | 21% | Earth Science | | | | 1 | 2018 | Science Team for the NASA ISRO Synthetic Aperture Radar (NISAR) Mission | 51 | 25 | 49% | Earth Science | | | | 1.00 | 2018 | Land Cover Land Use Change Step-2 | 22 | 23
9 | 41% | Earth Science | N/A | Overall selection rate vs. Step-1s is 17% | | 1 | 2018 | SERVIR Applied Sciences Team Step-1 | | 7
58 | 62% | Earth Science | | | | 10 10 10 10 10 10 10 10 | 2018 | SERVIR Applied Sciences Team Step-2 | 54
72 | 20
17 | 37% | Earth Science | | | | 10 | 2018 | DSCOVR Science Team | | | 45% | Earth Science | 154 | | | 1 | 2018 | Advanced Information Systems Technology | 100 | | 22% | Earth Science | | 2 | | 1 | 2018 | Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) Mission System Vicarious Calibration | 4 | 2 | | Earth Science | | Proposals were received 04/02/2019. Starting changes resulted in a delay. | | 1 | | | 54 | 15 | | | | | | 1. 1. 1. 1. 1. 1. 1. 1. | 2018
2018 | Heliophysics Data Environment Enhancements Step-1 Heliophysics Data Environment Enhancements Step-2 | | | 100% | | | | | 100
100 | 2018 | Heliophysics - Early Career Investigator Program Step-1 | 101
50 | 55
9 | 54%
18% | | N/A | 9 full selection and three partial selections | | 1 | | Heliophysics Guest Investigators Step-1 | | | N/A
26% | Heliophysics
Heliophysics | N/A | | | Column | 2018 | Heliophysics Living With a Star Science Step-1 | 120
104 | | N/A
28% | Heliophysics | N/A | two declined as non-compliant | | 1.0 | 2018 | Heliophysics Phase I DRIVE Science Centers Step-1 | 44 | 43 | | Heliophysics | N/A | | | 1 | 2018 | Heliophysics Space Weather Operations-to-Research | 19 | 9 | 47% | Heliophysics | NI/A | | | 100 | 2018 | Second Heliophysics Space Weather Operations-to-Research Step-2 | 12 | 7 | 58% | Heliophysics | | | | 1 | 2018 | Heliophysics Supporting Research Step-2 | 169 | 33 | 20% | Heliophysics | | Step-2 break out by discipline: risFrik: 42, TIM: 19, MAG: /1, Sun: 58 Step-2 break out by discipline: HSPHR: 8/37, ITM: 4/18 , MAG: 12/59 , Sun: 9/54 | | Column C | | Hetiophysics Technology and Instrument Development for Science Step-1 Heliophysics Technology and Instrument Development for Science Step-2 | 92
74 | 92 | | Heliophysics
Heliophysics | N/A | | | 15 | 2017 | Astrophysics Data Analysis | | | 16% | | LΞ | | | 10 10 10 10 10 10 10 10 | 2017
2017 | Astrophysics Research and Analysis Astrophysics Theory Program | 169
219 | 33
51 | 20%
23% | Astrophysics
Astrophysics | | 47 total selections, of which 14 were partial selections. 1 remains selectable as of July 2019. Four proposals were declined as non compliant. | | Company Control Contro | 2017
2017 | Fermi Guest Investigator - Cycle 11 Phase-1
K2 Guest Observer - Cycle 6 Phase-1 | 138 | 41 | 30%
N/A | Astrophysics | | 138 proposals were received for Fermi Cycle 11 via ARK RPS 02/23/2018. That includes 5 Large Project | | 1979 1974 Control State | 2017 | K2 Guest Observer - Cycle 6 Phase-2 | | 23 | 55% | Astrophysics | | | | Column C | 2017 | NuSTAR Guest Observer - Cycle 4 | | 83 | 42% | Astrophysics | | , , and the second seco | | 1.00 | 2017 | Swift Guest Investigator - Cycle 14 | 146 | | 21% | Astrophysics | | 8 were from non-US organizations and thus not funded and 1 belongs to a category of unfunded proposals (the so- | | 100 | 2017 | Transiting Exoplanet Survey Satellite Cycle-1 | 143 | | 27% | Astrophysics | | One proposal declined non compliant. Of those selected 4 were programs from non-US Organizations and thus not eligible for funding | | 100 Part Month Name 100
100 | 2017 | Exoplanets Research Program Step-2 | 111 | 19 | 17% | Cross Division | 148 | | | Column | 2017
2017 | | | | N/A
17% | | N/A
186 | | | April | 2017 | Topical Workshops, Symposia, and Conferences Advanced Component Technology | | | 59%
14% | Cross Division
Earth Science | | | | Committee Marches Agent and Control Agent Control 10 10 10 10 10 10 10 1 | 2017 | Advancing Collaborative Connections for Earth System Science | | 5
8 | 13% | Earth Science | | 52 NOIs were submitted. | | 100 | 2017 | Computational Modeling Algorithms and Cyberinfrastructure | 13 | 5 | 38% | Earth Science | | 10 NOIs submitted | | Proceedings | 2017 | CYGNSS Competed Science Team | 44 | 14 | 32% | Earth Science | | | | 10 | 2017 | Earth Surface and Interior | 39 | | 33% | Farth Science | | Dougla Comment and the comment of th | | Act Court of the Change Court | 2017 | Fire Impacts on Regional to Global Scales: Emissions, Chemistry, Transport, and Models | 38 | | 45% | Earth Science | | Only 9 were fully funded. One proposal was from a foreign organization 7 were partially funded. | | 100 | 2017 | Land Cover/Land Use Change | 33 | 8 | 24% | Earth Science | | | | 201 1921 1922 1 | 2017 | New (Early Career) Investigator Program in Earth Science | 141 | | 23% | Earth Science | | | | 200 100 | 2017 | Ocean Vector Winds Science Team | 48 | | 31% | Earth Science | | 2 declined non compliant | | 10 17 17 17 17 17 17 17 | 2017 | Ranid Response and Novel Research in Earth Science | 5 | 2 | 40% | Earth Science | | | | 201 Employee Deep 100 201 170 | 2017 | Science Team for the OCO Missions | 41 | 17 | 41% | Earth Science | | Plus four proposals from foreign organizations not eligible for NASA funding | | 1970
1970 | 2017 | Terrestrial Hydrology | 92 | 20 | 22% | Earth Science | | 17 fully funded, 3 partially funded. | | 2017 Relighent to Market (1982) 1982 | 2017 | Heliophysics Guest Investigators Step-1 | 193 | 191 | N/A | Heliophysics | | | | 2017 Histophesis Living With a first Gorone Bigs 100 110 | 2017 | Heliophysics Infrastructure and Data Environment Enhancements Step-1 | | 11 | N/A | Heliophysics | | | | Processing Space Number Operations in Relation (1997) 1997 | 2017 | Heliophysics Living With a Star Science Step-1 | | 136 | N/A | Heliophysics | | | | 2017 | 2017 | Heliophysics Space Weather Operations-to-Research | 21 | 8 | 38% | Heliophysics | | 2 proposals are under consideration for funding by another Agency. | | | 2017 | Heliophysics Supporting Research Step-2 | 177 | 37 | 21% | Heliophysics | | The 37 (21%) selected doesnt include the 7 partial selections. Sun 56 submitted, 12 selected, 3 partially selected, 0 | | 2017 | 2017 | Heliophysics Technology and Instrument Development for Science Step-2 | 88 | 33 | 38% | Heliophysics | | | | 2017 | 2017 | Magnetospheric Multiscale Guest Investigators Step-2 | 47 | 16 | 34% | Heliophysics | | Two declined as non compliant. | | | 2017 | Cassini Data Analysis Step-2 | 73 | 20 | 27% | Planetary Science | 120 | | | | | Discovery Data Analysis Step-1
Discovery Data Analysis Step-2 | | 53
7 | | Planetary Science
Planetary Science | | | | | 2017 | Emerging Worlds Step-1 | | | N/A | | N/A | | | | 2017 | Exobiology Step-1 | 200 | 177 | N/A | Planetary Science | N/A | | | | 2017 | InSight Participating Scientist Program | 67 | 19 | 28% | Planetary Science | | Plus four proposals from foreign organizations are selectable and under consideration for funding by a foreign gove | | 2017 March Can Analysis Step 154 153 154 153 154 153 154 154 153 154 1 | 2017 | Laboratory Analysis of Returned Samples Step-2 | | 6 | 27% | Planetary Science | 221 | | | Marc Data Analysis 19692 1975 Na. Parametry Science 1975 197 | 2017 | Lunar Data Analysis Step-2 | 48 | 11 | 23% | Planetary Science | 127 | Pus three partial selections | | 2017 Panetary Data Archiving, Restriction, and Tools Stap 2 61 13 21% Panetary Science Nat Scien | 2017 | Mars Data Analysis Step-2 | 103 | 21 | 20% | Planetary Science | 131 | | | | 2017 | OSIRIS REx Participating Scientists Program Step-2 | 61 | 13 | 21% | Planetary Science | 93 | Two were from foreign proposers | | Parentary Instrument Concepts of the Advancement of Solar Spatner December Supplier 150 NA Parentary Science NA 2 non-complaint, 9 decouraged. | 2017 | Planetary Data Archiving, Restoration, and Tools Step-1 Planetary Data Archiving, Restoration, and Tools Step-2 | 80 | 16 | 20% | Planetary Science
Planetary Science
| N/A
157 | plus one partial selection not included in data to the left | | | 2017 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-1 Planetary Instrument Concepts for the Advancement of Solar System Observations Step-2 | 106 | | 11% | Planetary Science
Planetary Science | N/A
308 | 2 non-compliant, 9 discouraged. | | 2017 Planetary Science and Technology Through Analog Research Step 2 | 2017 | Planetary Protection Research Planetary Science and Technology Through Analog Research Step-1 | 60 | 1
49 | N/A | Planetary Science
Planetary Science | N/A | | | 2017 Start System (Deliverations Steps 2 71 19 27% Panellary Science 370 jain & partial selections in NECO not included in the 19 listed. Aug award size for 19 NST 2017 Start System (Victory 2) 10 10 10 10 10 10 10 1 | 2017
2017 | Planetary Science and Technology Through Analog Research Step-2 | 47
90 | | 13%
N/A | Planetary Science
Planetary Science | 820
N/A | wide range of award sizes | | | | Solar System Observations Step-2 | | | | Planetary Science | 370
145 | plus 5 partial selections in NEOO not included in the 19 listed. Avg award size for 10 PAST selections is | | Astrophysics Data Analysis 238 232 275 | 2017 | Rosetta Data Analysis Step-1 | 45 | | N/A | Planetary Science | N/A | one non compliant and one discouraged | | Autophysics Profes Massion Concept Studies | 2016 | Astrophysics Data Analysis | | 52 | 22% | Astrophysics | 120 | 3 Proposals not reviewed as non-responsive/non-compliant. Total of awards: 17,900,460 over the period FY17-FY2 | | | 2016 | Astrophysics Probe Mission Concept Studies | | 10 | 36% | Astrophysics | | 10 of these was posted grante | | 2016 | 2016 | Astrophysics Theory Program | 200 | 31 | 16% | Astrophysics | 162 | no or senso more partial divarios. | | 2016 New Content Processing Step 2 91 24 2015 Autophysics 4 foreign PTs selected with no funding | 2016 | Fermi Guest Investigator - Cycle 10 | 183 | 42 | 23% | Astrophysics | | | | 2016 NaSTAR Guest Converver - Cycle 3 216 47 225 Astrophysics 47 arouth include foreign investigation. 33 proposers from US organizations received function 15 15 15 15 15 15 15 1 | 2016 | K2 Guest Observer - Cycle 5 Step-2 | 91 | 24 | 26% | Astrophysics | | 4 foreign Pl's selected with no funding. | | 2016 Sant Guerre Technology 3 3 30% Astrophysics | 2016 | NuSTAR Guest Observer - Cycle 3 | 216 | 47 | 22% | Astrophysics | NA | Not solicited this year 47 awards include foreign investigators. 33 proposers from US organizations received funds. | | 2016 Ecoplame Research Program Step 2 110 20 18% Conso Division 120 Plan a couple of partial selections | 2016 | Swift Guest Investigator - Cycle 13 | 156 | 23 | 15% | Astrophysics | | | | Debatistic Worlds Step 2 16 11 17 66 NA Cores Division NA | 2016 | Exoplanets Research Program Step-1 | 110 | 20 | 18% | Cross Division
Cross Division | 123 | Plus a couple of partial selections | | Description Science For Edigina 2015 Step 2 41 41 NA Ones Division NA | 2016
2016 | Habitable Worlds Step-1
Habitable Worlds Step-2 | 117 | 66
14 | NA
23% | Cross Division
Cross Division | NA
175 | | | | 2016 | Interdisciplinary Science For Eclipse 2017 Step-1 | 41 | 41 | NA | Cross Division | NA | | | 2016 John Steiner 2016 2017 | 2016 | Topical Workshops, Symposia, and Conferences | 51 | 42 | 82% | Cross Division | 30 | | | | 2016 | Land Cover/Land Use Change Step-2 | 25 | 9 | 36% | Earth Science | | | | 2016 | 2016 | Ocean Biology and Biogeochemistry-2 | 49 | | 27% | Earth Science | | | | 2016 Carbon Monitoring System 76 16 21% Earth Science | 2016 | Terrestrial Ecology Carbon Cycle Science | 135 | | 21% | Earth Science
Earth Science | | | | 2016 Ocean Staffiny Science Team 38 17 45% Earth Science | 2016 | Carbon Monitoring System Physical Oceanography | 34 | | 32% | Earth Science
Earth Science | LΞ | | | 2016 Ocean Surface Topography Science Team 56 26 46% Earth Science | | Ocean Salinity Science Team | | | | Earth Science | | | | 2016 Almospheric Composition: Upper Almospheric Composition Observations 35 24 66% Earth Science 320 Calculated Aerosol Monocand Processes, Prilippings Experiment 32; 14 44% Earth Science | 2016 | Ocean Surface Topography Science Team | 56 | | 46%
24% | | | | | 2016 Atmospheric Composition: Aura Science Team and Atmospheric Composition Modeling and Al. 100 39 39% Farth Science | 2016 | Atmospheric Composition: Upper Atmospheric Composition Observations | 35 | 24 | 69% | Earth Science | | | | 2010 Amospheric Composition: Aura science learn and Amospheric Composition Notering and A 100 39 39 59 Earth Science 2010 Terrish Hydrological Part 201 | 2016 | Atmospheric Composition: Aura Science Team and Atmospheric Composition Modeling and A | 100 | 39 | 39% | Farth Science | | | | 2016 WestBern and Almostopheric Dynamics 68 28 41% Earth Science | 2016 | Weather and Atmospheric Dynamics | 68 | 28 | 41% | Earth Science | | | | 2016 Earth Surince shirt omerior 45 16 40% Earth Science 2016 Regular Research in Earth Science 13 6 46% Earth Science 2016 Applied Science - Water Resources Step-1 75 44 55% Earth Science | 2016 | Rapid Response and Novel Research in Earth Science | 13 | 6 | 46% | Earth Science | | | | 2015 Exobiology Step-1 247 225 N/A Planetary Science NA | | | | | | | | | |---|--------------------------------------|---|----------------|-----------|------------|--|-----------------|--| | 10 | | Applied Science - Water Resources Step-2
IceBridge Science Team | | 8 | | | | | | 1. | 2016 | Studies with ICESat and CrunSat-2 | | | 46%
17% | Earth Science | | | | 1. | 2016 | Earth Science U.S. Participating Investigator | 17 | 7 28 | 41% | | | | | 10 | 2016 | NASA Data for Operation and Assessment | 56 | 15 | 27% | Earth Science | | | | The content of | 2016 | Utilization of Airborne Visible/Infrared Imaging Spectrometer - Next Generation Data from | 27 | 10 | 37% | Earth Science | | | | 10 | 2016 | Instrument Incubator Program | 80 | 19 | 24% | Earth Science | | | | 1 | 2016 | Citizen Science for Earth Systems Program | 103 | 16 | 16% | Earth Science | | | | | 2016 | Group on Earth Observations Work Programme | 111 | 33 | 30%
| Earth Science | | | | 1 | 2016 | Heliophysics Grand Challenges Research Step-1 | 44 | 44 | NA | Heliophysics | | | | 1 | 2016 | Heliophysics Guest Investigators Step-1 | 198 | 197 | NA | Heliophysics | | | | 1. | 2016 | Heliophysics Infrastructure and Data Environment Enhancements Step-1 | 28 | 28 | N/A | Heliophysics | | Plus four partial selections | | 1. | 2016 | Heliophysics Living With a Star Science Step-1 | 74 | | 100% | | 53 | | | 1. | | Heliophysics Supporting Research Step-1 | | | | Heliophysics
Heliophysics | | | | 1. | | Heliophysics Supporting Research Step-2 | | | | Heliophysics | | | | Part | 2016 | Heliophysics Technology and Instrument Development for Science Step-2 | | | 23% | Heliophysics | | | | 1.00 | 2016 | Heliophysics U.S. Participating Investigator Step-2 | 5 | 2 | 40% | Heliophysics | | | | 1 | 2016 | Magnetospheric Multiscale Guest Investigators Step-2 | 40 | 10 | 25% | Heliophysics | A174 | | | 1 | 2016 | Cassini Data Analysis Step-2 | 66 | 12 | 18% | Planetary Science | | | | 1 | 2016 | Concepts for Ocean worlds Life Detection Technology Step-2 | 83 | 16 | 19% | Planetary Science | | | | 1 | 2016 | Discovery Data Analysis Step-2 | 34 | 10 | 29% | Planetary Science | 135 | plus one partial selection not included in data to the left | | 1 | 2016
2016 | Dynamic Power Convertors for Radioisotope Power Systems Step-1 | | | N/A
29% | Planetary Science
Planetary Science | N/A
see note | Phase 1s were around \$800k each. Total cost estimates for Phase 1, 2, and 3, all came in at around \$3M each. | | Company Comp | | Emerging Worlds Step-1 | | | | Planetary Science | N/A | | | 1. | 2016 | Exobiology Step-1 | 239
173 | | N/A
16% | Planetary Science | N/A | | | 1 | 2016 | Exoplanet Research Program Step-2 PSD only, redundant with Xdiv XRP row | | 11 | 18% | Planetary Science | 123 | | | Column C | 2016 | Laboratory Analysis of Returned Samples Step-1 | 31 | 31 | N/A | Planetary Science | N/A | | | 10 10 10 10 10 10 10 10 | 2016 | Lunar Data Analysis Step-1 | 63 | 63 | N/A | Planetary Science | N/A | | | 1 | 2016 | Mars Data Analysis Step-1 | 166 | 156 | N/A | Planetary Science | N/A | | | 1 | 2016 | Maturation of Instruments for Solar System Exploration (MatISSE) Step-1 | 80 | 79 | N/A | Planetary Science | N/A | | | 100 | 2016 | New Frontiers Data Analysis Program Step-1 | 50 | 33 | NA | Planetary Science | | | | 1 | 2016 | Planetary Data Archiving, Restoration, and Tools Step-1 | 116 | 113 | N/A | Planetary Science | N/A | | | 10 10 10 10 10 10 10 10 | 2016 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-1 | 119 | 113 | N/A | Planetary Science | N/A | | | 1 | 2016
2016 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-2 Planetary Science and Technology Through Analog Research Step-1 | 85
82 | 17
62 | 20%
N/A | Planetary Science
Planetary Science | 311
N/A | | | 1965 1975 | | Planetary Science and Technology Through Analog Research Step-2 Planetary Science Deep Space SmallSat Studies NOTs | | | | Planetary Science | 855 | wide range of award sizes | | Section Company Comp | 2016 | Planetary Science Deep Space SmallSat Studies Step-2 | 102 | 19 | 19% | Planetary Science | 348 | | | 10 10 10 10 10 10 10 10 | 2016 | Solar System Observations Step-2 | 90 | 30 | 33% | Planetary Science | | plus 5 partial selections | | 1.00 | 2016 | Solar System Workings Step-2 | 299 | 60 | 20% | Planetary Science | 151 | | | Company Comp | 2015 | Astrophysics Research and Analysis | 159 | 54 | 34% | Astrophysics | 120 | | | Control Memory Control Report Contro | 2015 | Exoplanet Research Program Step-2 Astro only, redundant with Xdiv XRP row | 39 | 6 | 15% | Astrophysics | | | | 1965 1975 | 2015 | K2 Guest Observer - Cycle 3 Step-1 | 83 | N/A | N/A | Astrophysics | | | | Control Control Cycle Engine Control Control Cycle Con | 2015
2015 | K2 Guest Observer - Cycle 3 Step-2
K2 Guest Observer - Cycle 4 Step-1 | | | 41%
N/A | | | | | 10 | | K2 Guest Observer - Cycle 4 Step-2 | 109
5 | 36
3 | 33%
60% | | | | | 100 201 The Control Security Security Color 1. 100
100 | 2015
2015 | NuSTAR Guest Observer - Cycle 2 | | | 27%
N/A | Astrophysics | | | | 1966 1972 | | SOFIA Third Generation Science Instrument Step-2 | 3 29 | 2 7 | 67%
24% | Astrophysics | 843 | | | Section Control Section Sectio | 2015 | Swift Guest Investigator - Cycle 12 | | 29 | 16% | Astrophysics | | 8 fully fundad niue 5 noticel ealactions or wall | | 100 | 2015 | Exoplanet Research Program Step-1 | 137 | N/A | N/A | Cross division | N/A | | | 100 | 2015 | Advancing Collaborative Connections for Earth System Science | 52 | 8 | 15% | Earth Science | 114 | Asia fallace 7 and PSD fallace 15 and one prior study so a social of 20 flor including prior study | | 150 | 2015 | Carbon Monitoring System | 68 | 15 | 22% | Earth Science | | | | 150 | 2015 | Cryospheric Science | 84 | 17 | 20% | Earth Science | | | | 101 1 | 2015 | Earth Surface and Interior | 59 | 25 | 42% | Earth Science | | | | 150 | 2015 | Health and Air Quality Applied Sciences Team | 58 | 13 | 22% | Earth Science | | | | 100
100 | | IceBridge Observations In-Space Validation of Earth Science Technologies | | 5 | 17% | | | | | 100 | | Land Cover / Land Use Change | | | 33%
19% | Earth Science | | This program uses a binding two Step submission. The 13/70 reflects the fact that 70 were submitted to Step-1, on | | 150 100 | 2015 | Modeling, Analysis, and Prediction | | 5
20 | 63% | Earth Science | | | | 275 26 275 26 275 26 275 26 275 26 275 26 275 26 275 26 275 26 275 26 275 26 275 | 2015 | New (Early Career) Investigator Program in Earth Science | 115 | 22 | 19% | Earth Science | | | | 2015 SERVIN Specific Sciences 10 | 2015 | Physical Oceanography | 37 | 8 | 22% | Earth Science | | | | Extra Deliver Service Servic | 2015 | Satellite Calibration Interconsistency Studies | 65 | 12 | 18% | Earth Science | | | | 2015 Michighest Long Wins See See See See See See See See See S | 2015 | SERVIR Applied Sciences Team | 43 | 16 | 37% | Earth Science | | | | 2015 Natiophysics Court Intersignation Resp. 202 137 208 Natiophysics | 2015 | Sustainable Land Imaging-Technology | 30 | - 6 | 20% | Earth Science | | | | 2015 Michighest Dearful Indication and Conference Stap 2 | 2015 | Understanding Changes in High Mountain Asia
Heliophysics Guest Investigators Step-1 | 202 | 137 | 68% | Heliophysics | NA | | | Description in Productions and Data Environment Enhancement Supp. 1 | 2015 | Heliophysics Guest Investigators Step-2 Heliophysics Infrastructure and Data Environment Enhancements Step-1 | 15 | 15 | 100% | Heliophysics
Heliophysics | NA. | | | | 2015
2015 | Heliophysics Infrastructure and Data Environment Enhancements Step-2 | | | | Heliophysics | 51
NA | In this program selected at Step-1 really is binding these were "invited" to submit a Step-2. Normally. Step-1 propo | | | 2015 | Heliophysics Living With a Star Science Step-2 | 92 | 20 | 22% | Heliophysics | NA | | | Part | 2015 | Heliophysics Supporting Research Step-2 | 251 | 46 | 18% | Heliophysics | NA. | SOLR = 14/78; MAG = 15/77; ITM = 6/30; HSPHR = 11/66 (three were returned as non-compliant) | | Control Date Analysis Step 2 Control Control Ashered College Control Control Ashered College Control Control Ashered College Control | 2015 | Heliophysics Technology and Instrument Development for Science Step-2 | 106 | 14 | 13% | Heliophysics | NA. | | | Coltern science Altered Data, Education, and Tods Step-2 | 2015 | Cassini Data Analysis Step-2 | 84 | 21 | 25% | Planetary Science | 116
NA | | | | 2015 | Citizen science Asteroid Data, Education, and Tools Step-2 | 8 | 2 | 25% | Planetary Science | 112
NA | | | Emerging Worlds Step-2 157 28 22% Puntary Science 167 Three were 28 selections include three partial selections are of which was a way narrow plot to preserve a 1 157 158 1 | 2015 | Discovery Data Analysis Step-2 | 39 | 9 | 23% | Planetary Science | 137
NA | Plus two partial selections | | | 2015 | Emerging Worlds Step-2 | 132 | 29 | 22% | Planetary Science | 167 | There were 29 selections include three partial selections one of which was a very narrow pilot to preserve a collect | | Published Worlds Step | 2015 | Exobiology Step-2 | 190 | 30 | 16% | Planetary Science | 167 | There were 30 selections include two descopes and three pilot studies. The average award size not including those | | Employed Perforating Secretal (Step 1 66 68 NA Periodary Science Sc | 2015 | | 121 | 81 | N/A | Planetary Science | NA. | | | 2015 Libroratory Analysis of Returned Samples Step 2 7 7 7 7 7 7 7 7 7 | 2015 | Hayabusa2 Participating Scientist Step-1 | 69 | 69 | N/A | Planetary Science | NA | | | | 2015
2015 | Hayabusa2 Participating Scientist Step-2 | 46
22 | 9
20 | 20%
N/A | Planetary Science | NA. | | | Dark Data Analysis Slop-1 | 2015
2015 | Laboratory Analysis of Returned Samples Step-2
Lunar Data Analysis Step-1 | 71 | 8
70 | 44%
99% | Planetary Science
Planetary Science | 230
NA | The average award size in year 1 ranges from ~\$65K to nearly \$600K | | Many Data Analysis Spi-2 101 20 2076 Pinetary Secreta (102) 102
102 | 2015 | Lunar Data Analysis Step-2
Mars Data Analysis Step-1 | 47
133 | 12 | 26% | Planetary Science | 115
NA | | | Mars Science Laboratory Participating Scienced Program Step 2 68 28 272 Particly Science No. | 2015 | Mars Data Analysis Step-2 | 101 | 20 | 20% | Planetary Science
Planetary Science | 102
NA | | | 2015 Planetary Data Archiving, Restoration, and Tools Step-1 117 113 113 114 115 | 2015 | Mars Science Laboratory Participating Scientist Program Step-2 | 88 | 28 | 32% | Planetary Science | N/A | Of the 28 selected four were not for NASA funding and four were partial selections. | | | 2015 | New Frontiers Homesteader-2 | 84 | 8 | 10% | Planetary Science | | | | 2015 Parentary Protection Research Transpir Analog Research Step 6 3 3 339, Parentary Science, 450 Save funded as proposed, how were one-year plot duclies. | 2015 | Planetary Data Archiving, Restoration, and Tools Step-2 | | | 25% | Planetary Science | | one of the 24 was a partial selection, but it had no effect on the average award size. | | 2015 Solar System Cheervactors Step 2 70 69 NA Periodic Solar System Cheervactors Step 2 70 70 70 70 70 70 70 | 2015 | Planetary Protection Research Planetary Science and Technology Through Analog Research Step-1 | | | N/A | Planetary Science
Planetary Science | NA | | | 2015 Solar System Observations Step 2 52 13 25% Principles Science 118 | 2015 | Planetary Science and Technology Through Analog Research Step-2
Solar System Observations Step-1 | 48
70 | 69 | N/A | Planetary Science | NA | | | 2015 Solar System Working Step2 314 66 214 Prevent Sorror 136 | 2015 | Solar System Observations Step-2
Solar System Workings Step-1 | | 403 | N/A | Planetary Science
Planetary Science | NA | | | 2014 | 2015 | Solar System Workings Step-2
Astrophysics Data Analysis | | 66
71 | 21% | Planetary Science | | | | 2014 Absorbyvics Theory Program 150 22 151 Absorbyvics 155 | 2014 | Astrophysics Explorer U.S. Participating Investigators | 4 | 0 | 0%
23% | Astrophysics | | | | 2014 Extreme Princision Depuler Sepertionneter Instrument Steps 2 6 2 3 3 Nr. Astrophysics | 2014 | Astrophysics Theory Program | 216 | 32 | 15% | Astrophysics | 155 | | | 2014 Ferm Goard Investigator - Cycle 8 180 35 8 8 8 Assorbytics | 2014 | Extreme Precision Doppler Spectrometer Instrument Step-1 | 6 | | N/A | Astrophysics | | | | 2014 2Guest Observer - Cycle 1 Step 2 59 27 29% Adoptypics | 2014 | Fermi Guest Investigator – Cycle 8 | 190 | 35
N/A | 18% | Astrophysics | | | | 2014 IX Goset Observer - Oyde 2 Step-2 76 26 34% Astrophysics Three were also 9 selected with no funding, presumably proposal from foreign organizations 2014 Natory Gene Roman Technology Fellowings 8 3 39% Astrophysics 168 2014 NaSTAR Cleast Observer - Cycle 1 194 33 11% Astrophysics 2014 Strategic Archypiscis Technology 28 10 39% Astrophysics 3014 Strategic Archypiscis Technology 38 40 Astrophysics 9 were fully funded, the 10th was a partial selection. | | K2 Guest Observer = Cycle 1 Step-2 | 93 | 27 | 29% | Astrophysics | | There were also 9 selected with no funding, presumably proposal from foreign organizations | | 2014 Natory Grace Roman Entralogy Fellowships 8 3 38% Astrophysics 168 2014 NatSTAR Guest Closerver - Cycle 1 194 33 17% Astrophysics 2014 Sincespic Astrophysics Technology 28 10 30% Astrophysics 9 were fully funded, the 10th was a partial selection. | 2014 | V2 Cuest Observer Cuele 2 Step 1 | | N/A | N/A | Astrophysics | | | | 2014 Sariagic Austrophysics 1echnology 28 10 36% Astrophysics 9 were fully funded, the 10th was a partial selection. | 2014
2014
2014 | K2 Guest Observer = Cycle 2 Step-1
K2 Guest Observer = Cycle 2 Step-2 | 76 | 26 | | Astrophysics | | There were also 9 selected with no funding, presumably proposal from foreign organizations | | 2014 Swift Cuiest Investgator — Cycle 11 108 32 19% Astrophysics 131 wide range, from \$50K-\$200K 2014 WFRST Preparators \$53 17 32% Astrophysics 131 wide range, from \$50K-\$200K 2014 WFRST Preparators \$53 17 32% Astrophysics 131 wide range, from \$50K-\$200K 2014 WFRST Preparators | 2014
2014
2014
2014
2014 | K2 Guest Observer – Cycle 2 Step-1 K2 Guest Observer – Cycle 2 Step-2 Nancy Grace Roman Technology Fellowships NuSTAR Guest Observer - Cycle 1 | 76
8
194 | 3 33 | 38%
17% | Astrophysics
Astrophysics
Astrophysics | 166 | | | 2014 | Exoplanet Research Program Step-1 | 169 | 163 | 96% | Cross division | | | |--|--|---|---|--
--|--------------------------------|--| | 2014
2014 | Exoplanet Research Program Step-2
Advanced Information Systems Technology | 134
124 | 24
24 | 18%
19% | Cross division | | PSD funded 10 out of 72 = 14%, average award size = \$131K. Plus, later, PSD funded two more with a one time | | 2014
2014 | Atmospheric Composition: Laboratory Research Atmospheric Composition: Modeling and Analysis | 45
95 | 13
18 | 29%
19% | Earth Science
Earth Science | | | | 2014
2014 | Atmospheric Composition: Spectral Climate Signal
Carbon Monitoring System | 21
71 | 7
15 | 33%
21% | Earth Science
Earth Science | 313 | | | 2014
2014 | Climate Indicators and Data Products for Future National Climate Assessments
Computational Modeling Algorithms and Cyberinfrastructure | 94
23 | 25
7 | 27%
30% | Earth Science
Earth Science | | | | 2014
2014 | DSCOVR Earth Science Algorithms Earth Science U.S. Participating Investigator | 19
20 | 7 | 47%
35% | Earth Science
Earth Science | | | | 2014
2014 | GNSS Remote Sensing Science Team
HyspIRI Preparatory Airborne Activities and Associated Science: Coral Reef and Volcano Res | 30
21 | 10 | 33%
48% | Earth Science
Earth Science | | | | 2014
2014 | IceBridge Research
ICESat2 Science Definition Team | 23
25 | 9
12 | 39%
48% | Earth Science | | | | 2014
2014 | Land Cover / Land Use Change: Multi-Source Land Imaging Science Ocean Biology and Biogeochemistry: Ocean Color Remote Sensing Vicarious (In Situ) Calibra | 42
12 | 7 | 17%
25% | Earth Science
Earth Science | | | | 2014
2014 | Ocean Salinity Field Campaign Physical Oceanography | 21
35 | 12
7 | 57%
20% | Earth Science
Earth Science | | | | 2014
2014 | Rapid Response and Novel Research in Earth Science Remote Sensing Theory for Earth Science | 15
118 | 5
22 | 33%
19% | Earth Science
Earth Science | | | | 2014
2014 | Science Team for the OCO-2 Mission Severe Storm Research | 47
37 | 21
12 | 45%
32% | Earth Science
Earth Science | | | | 2014
2014 | Solar Irradiance Science Team
Terrestrial Ecology | 13
101 | 7
21 | 54%
21% | Earth Science
Earth Science | | | | 2014 | Weather
Heliophysics Guest Investigators Step-1 | 37
117 | 12
95 | 32%
N/A | Earth Science
Heliophysics | N/A | | | 2014 | Heliophysics Guest Investigators Step-2 Heliophysics Infrastructure and Data Environment Enhancements Step-1 | 90 | 37
21 | 41%
N/A | Heliophysics
Heliophysics | N/A | Interface Region Imaging Spectrograph 9/21 selected. Open Data Development Element 20/51 selected. Van Al
1 discouraged | | 2014 | Heliophysics Infrastructure and Data Environment Enhancements Step-2 Heliophysics Living With a Star Science Step-1 | 17 | 10
N/A | 59%
N/A | Heliophysics
Heliophysics | N/A | Step-1 proposals in this program are not evaluated, selected or declined. | | 2014 | Heliophysics Living With a Star Science Step-2 Heliophysics Supporting Research Step-1 | 103 | 22 | 21%
N/A | Heliophysics
Heliophysics | NI/A | The 168 encouraged break down as follows: Heliosphere 45/91, ITM = 21/40, Magnetosphere = 41/105 and Soli | | 2014 | Heliophysics Supporting Research Step-2 Heliophysics Technology and Instrument Development for Science Step-1 | 221
98 | 39
N/A | 18%
N/A | Heliophysics
Heliophysics | NI/A | Submitted proposals break down as follows: Hefosphere 60, ITM 24, Magnetosphere 61, and Solar 76, no decis
Step-1 proposals in this program are not evaluated, selected or declined. | | 2014 | Heliophysics Technology and Instrument Development for Science Step-1 Heliophysics Technology and Instrument Development for Science Step-2 Cassini Data Analysis Step-1 | 85
101 | 14 | 16%
N/A | Heliophysics
Planetary Science | N/A | Only 1 Step-1 was discouraged for non compliance. | | 2014 | Cassini Data Analysis Step-2 Dawn at Ceres Guest Investigator Program Step-1 | 78
80 | 19
N/A | 24%
N/A | Planetary Science
Planetary Science | 122
N/A | Of the 78 proposals submitted to CDAPS, 18 US organizations were seleted, plus one foreign investigator was s
Step-1 proposals in this program are not evaluated, selected or declined. | | 2014 | Dawn at Ceres Guest Investigator Program Step-2 Discovery Data Analysis Step-1 | 48
32 | 9 | 19%
N/A | Planetary Science
Planetary Science | 91 | B selected from US organizations and one to a foreign P1. The award sizes spanned a wide range 1 was discouraged from this program but redirected and 1 was discouraged as non compliant | | 2014 | Discovery Data Analysis Step-2 Emerging Worlds Step-1 | 27 | 9 | 33%
N/A | Planetary Science
Planetary Science | 123 | Plus one partial selection. 19 were discouraged from this program but redirected and 4 were discouraged as non compliant. | | 2014 | Emerging Worlds Step-2 | 155 | 33 | 21% | Planetary Science | 160 | One selection was bridge funding, and was done as an augmentation. First year budgets: mean = \$160, median | | 2014
2014
2014 | Exobiology Step-1 Exobiology Step-2 Exoploned Repearch Program Step-2 BSD only, redundant with Ydiv VPP row | 186
144
70 | 1/4
30
10 | N/A
21%
14% | Planetary Science
Planetary Science
Planetary Science | 183 | 9 were discouraged from this program but redirected and 3 were discouraged as non compliant. The 30 selected and the average award size for year 1 include 4 partial selections. BSD funded 10 cut of 72 = 145, suggrap award size = \$131K, Plus, later, PSD funded two more with a one time. | | 2014 | Exoplanet Research Program Step-2 PSD only, redundant with Xdiv XRP row Habitable Worlds Step-1 | 110 | 100 | N/A | Planetary Science
Planetary Science | N/A | PSD funded 10 out of 72 = 14%, average award size = \$131K. Plus, later, PSD funded two more with a one time
10 were discouraged | | 2014 | Habitable Worlds Step-2 Laboratory Analysis of Returned Samples Step-1 | 72
29 | 15
29 | 21%
N/A | Planetary Science
Planetary Science | 160
N/A | | | 2014 | Laboratory Analysis of Returned Samples Step-2 Lunar Data Analysis Step-1 | 24
82 | 72 | 38%
N/A | Planetary Science
Planetary Science | 245
N/A | 8 were discouraged from this program but redirected and 2 were discouraged as non compliant | | 2014 | Lunar Data Analysis Step-2
Mars Data Analysis Step-1 | 139 | 14
N/A | 27%
N/A | Planetary Science
Planetary Science | 102
N/A | | | 2014 | Mars Data Analysis Step-2 Maturation of Instruments for Solar System Exploration (MatISSE) Step-1 Maturation of Instruments for Solar System Exploration (MatISSE) Step-1 | 104
55 | 28
54 | 27%
N/A | Planetary Science
Planetary Science | N/A | One was a descope, one other asked for 4 years but is only getting 3 (not exactly a descope). No one year awar
Only one was discouraged as non compliant | | 2014 | Maturation of Instruments for Solar System Exploration (MatISSE) Step-2 Planetary Data Archiving, Restoration, and Tools Step-1 | 143 | 129 | 11%
N/A | Planetary Science
Planetary Science | 937
N/A | 14 were discouraged from this program but redirected | |
2014
2014 | Planetary Data Archiving, Restoration, and Tools Step-2 Planetary Instrument Concepts for the Advancement of Solar System Observations Step-1 | 105
112 | 23
N/A | 22%
N/A | Planetary Science
Planetary Science | N/A | The 105 is a combination of 100 proposals submitted to PDART directly and another 5 that were sent from other
Three were discouraged. | | 2014
2014 | Planetary Instrument Concepts for the Advancement of Solar System Observations Step-2
Planetary Protection Research | 96
19 | 12
4 | 13%
21% | Planetary Science
Planetary Science | 323
135 | There were also three one year pilot studies. In this case the average award size is average of all years, not just | | 2014
2014 | Planetary Science and Technology Through Analog Research Step-1
Planetary Science and Technology Through Analog Research Step-2
Small, Innovative Missions for Planetary Exploration Step-1 | 69
45 | 55
7 | N/A
16% | Planetary Science
Planetary Science | N/A | 14 were discouraged from this program but redirected Awards ranged from ~\$100K to ~\$1M | | 2014
2014 | Small, Innovative Missions for Planetary Exploration Step-1 Small, Innovative Missions for Planetary Exploration Step-2 | 56
22 | 50
5 | N/A
23% | Planetary Science
Planetary Science | N/A | Two were fully selected, but three others were selected for technology development. | | 2014
2014 | Solar System Observations Step-1
Solar System Observations Step-2 | 99
71 | 86
21 | N/A
30% | Planetary Science
Planetary Science | N/A
284 | 13 were discouraged from this program without redirect
For SSO as a whole, the average is \$284K. For the NEOO part it's \$423K and for PAST (non-NEOO) it's \$117 | | 2014 | Solar System Workings Step-1
Solar System Workings Step-2 | 509
386 | 474
82 | N/A
21% | Planetary Science
Planetary Science | N/A | 35 were discouraged from this program but redirected. The average award size is based on the 76 in the SSW portfolio, it doesn't include those that were moved and fu | | 2013 | Astrophysics Data Analysis Astrophysics Research and Analysis | 276
177 | 33 | 12%
21% | Astrophysics
Astrophysics | 109 | 278 proposals submitted but 2 proposals were returned as non-responsive. 33 selected, so Success Rate by pro
181 were submitted but only 177 were deemed compliant. 5 were partially funded | | 2013 | Astrophysics Theory Program Fermi Guest Investigator – Cycle 7 | 198 | 27
43 | 14% | Astrophysics
Astrophysics | | To there administed dut only 117 were declined compliant. 5 were persually fortubed | | 2013 | Origins of Solar Systems (Astro) | 39 | 5 9 | 13% | Astrophysics | 121 | | | 2013 | Strategic Astrophysics Technology
Swift Guest Investigator – Cycle 10 | 175
82 | 35
11 | 20% | Astrophysics
Astrophysics
Earth Science | 299 | All proposers notified by18-Aug-14, 150 days after the proposal due date. | | 2013 | Advanced Component Technology Advancing Collaborative Connections for Earth System Science | 58
116 | 12 | 21% | Earth Science | | | | 2013
2013 | Atmospheric Composition: Campaign Data Analysis and Modeling
Atmospheric Composition: Aura Science Team | 68 | 36
27
41 | 40%
17% | Earth Science
Earth Science | | | | 2013
2013 | Carbon Cycle Science
Carbon Monitoring System | 235
37 | 17 | 46% | Earth Science
Earth Science | | This was an interagency call and the 41/235 = 17% reflects the overall selections. Here is the breakout: 23 ½ sei | | 2013
2013 | Cryospheric Science Earth Science Applications: Health and Air Quality | 32
67 | 10
9 | 31%
13% | Earth Science
Earth Science | 100 | | | 2013
2013 | Earth Science Applications: Water Resources Earth Surface and Interior | 75
37 | 9 | 12%
49% | Earth Science
Earth Science | | | | 2013
2013 | Earth Venture Suborbital -2
IceBridge Science Team | 33
18 | 5
10 | 15%
56% | Earth Science
Earth Science | | | | 2013 | Land Cover / Land Use Change
Land Cover / Land Use Change Step-1 | 31
71 | 9 | 29%
46% | Earth Science
Earth Science | | | | 2013 | NASA Data for Operation and Assessment NASA Energy and Water Cycle Study | 44
60 | 13
19 | 30%
32% | Earth Science
Earth Science | | | | 2013 | New (Early Career) Investigator Program in Earth Science Ocean Biology and Biogeochemistry | 131 | 22 | 17% | Earth Science
Earth Science | 79 | | | 2013
2013 | Ocean Salinity Field Campaign Analysis and Planning Ocean Salinity Science Team | 2
31 | 2 | 100%
45% | Earth Science
Earth Science | | | | 2013 | Ocean Vector Winds Science Team PACE Science Team | 53
49 | 20
19 | 38% | Earth Science
Earth Science | | | | 2013
2013 | Physical Oceanography Sea Level Rise | 41 | 11 | 27%
25% | Earth Science
Earth Science | 520 | proposers notified by 2/20/2014 | | 2013 | Suomi NPP Science Team and Processing Systems for Data Records Terra and Aqua – Algorithms – Existing Data Products | 119 | 45
32 | 38%
80% | Earth Science
Farth Science | 162 | | | 2013 | Terrestrial Ecology Terrestrial Hydrology | 56
70 | 6 | 11%
21% | Earth Science
Earth Science | 102 | | | 2013 | The GLOBE Program Implementation Office The Science of Terra and Aqua | 4
208 | 1 56 | 25%
27% | Earth Science
Earth Science | | 214 submitted, 2 were moved to A.46 and others withdrawn or non compliant | | 2013 | Weather | 52 | 16 | 31% | Earth Science | 500 | 214 solimited. 2 were moved to And and duries will drawn or non-compliant. All decisions communicated by email on 10/24 this is the theory program in 2013 | | 2013
2013
2013 | Heliophysics Grand Challenges Heliophysics Guest Investigators Step-1 Haliophysics Guest Investigators Step-2 | 47
174
83 | 11
73 | 23%
N/A
27% | Heliophysics
Heliophysics | | this is the theory program in 2013
Only 73 were encouraged to submit a Step-2 proposal but more than that did, see Heliophysics Guest Investigat | | 2013 | Heliophysics Guest Investigators Step-2 Heliophysics Infrastructure and Data Environment Enhancements Heliophysics Life Milks Step Step Step 1 | 34 | 22
14 | 41% | Heliophysics
Heliophysics | | | | 2013 | Heliophysics Living With a Star Science Heliophysics Supporting Research Step-1 | 187
306 | 25
294 | 13%
N/A | Heliophysics
Heliophysics | | only 12 were deemed Non-Compliant. All others were invited to submit a Step-2. | | 2013
2013 | Heliophysics Supporting Research Step-2 Heliophysics Technology and Instrument Development for Science | 261
92 | 35
13 | 13%
14% | Heliophysics
Heliophysics | | | | 2013 | Solar and Heliospheric Physics
Astrobiology: Exobiology and Evolutionary Biology | N/A
148 | N/A
27 | N/A
18% | Heliophysics
Planetary Science | 158 | Wasn't competed. Note: only 144 were reviewed | | 2013 | Cassini Data Analysis Cosmochemistry | 99
92 | 10
24 | 10%
26% | Planetary Science
Planetary Science | 155 | 108 proposals total, 99 from US institutions. 10 DAPs were funded, three of which include participating scienitst;
There were 6 severe descopes in COS, one of which was a partial-year bridge award which I don't normally cou | | 2013
2013 | Instrument Concepts for Europa Exploration Laboratory Analysis of Returned Samples | 30
23 | 15
12 | 50%
52% | Planetary Science
Planetary Science | 1080
212 | 2 noncompliant proposals were not reviewed. ICEE was limited to one year grants. Average awarded budget v | | 2013
2013 | Mars Data Analysis Mars Fundamental Research (MFRP) | 102
135 | 30
27 | 29%
20% | Planetary Science
Planetary Science | 138 | | | 2013 | Moon and Mars Analog Mission Activities (MMAMA) Near Earth Object Observations (NEOO) | 20
32 | 2
11 | 10%
34% | Planetary Science
Planetary Science | 95
252 | 4 remain selectable. Award sizes range from ~85 to ~600 K | | 2013
2013 | Origins of Solar Systems (Planetary) Outer Planets Research | 90
154 | 13
22 | 14%
14% | Planetary Science
Planetary Science | 105 | On 12/05 first 5 selections have been made. In spring more selections were made bringing the total up to 13.2: | | 2013
2013 | Planetary Astronomy (PAST) Planetary Atmospheres (PATM) | 49
113 | 20
23 | 41%
20% | Planetary Science
Planetary Science | 125 | Initial 15 selections plus 1 partial from fall 2013 increased to 20 fully-funded plus 1 partial in Spring 2014
Initial 14 selections from fall 2013 increased to 23 fully-funded out of 113 (20%) plus 1 partial in Spring 2014 | | 2013
2013 | Planetary Geology and Geophysics (PGG) Planetary Instrument Concepts for the Advancement of Solar System Observations | 131
113 | 32
12 | 24%
11% | Planetary Science
Planetary Science | 114
280 | 135 were submitted, 4 were withdrawn and one non-compliant returned without review. We received 117 proposals, 4 were found non-compliant so only 113 were peer reviewed | | 2013 | Planetary Mission Data Analysis Astrophysics Data Analysis | 40
291 | 13 | 33%
31% | Planetary Science
Astrophysics | 135 | PMDAP received 42 proposals in 2013, but one was withdrawn by the proposer and one non-compliant proposal | | 2012 | Astrophysics Research and Analysis Astrophysics Theory Program | 178 | 33
28 | 19%
15% | Astrophysics
Astrophysics | | 9/11 APRA PIs informed of decisions, 173 days after the due date and 12 weeks after the end of the review. 23 | | 2012 | Chandra Guest Investigator – Cycle 15 Euclid Science Team | 636 | 179 | 28% | Astrophysics
Astrophysics | .5, | This was not in ROSES | | ZU12 | | 223
1094 | 50
249 | 22% | Astrophysics
Astrophysics | 76 | Pls were notified 118 days after the due date. This was not in ROSES | | 2012 | Fermi Guest Investigator – Cycle 6 | | | 0% | Astrophysics | | Originally it was 25 Proposals selected (22 were to be funded; 3 foreign Pis not funded) but then
the failure of a | | 2012
2012
2012 | Fermi Guest Investigator – Cycle 6
Hubble Guest Observer – Cycle 21
Kepter Guest Observer – Cycle 5 | 63 | 10 | 29% | Astrophysice | | | | 2012
2012
2012
2012
2012 | Ferm Guest Investigator - Cycle 6 Hubble Guest Observer - Cycle 21 Kepler Guest Observer - Cycle 5 Kepler Participating Scientist Program Nancy Grace Roman Technology - Felowships | 63 | 0
10
2 | 29%
17%
26% | Astrophysics
Astrophysics
Astrophysics | | Pls notified 118 days after the due date and 7 1/2 weeks after the last review day | | 2012
2012
2012
2012
2012
2012
2012
2012 | Ferm Guest Investigator – Cycle 8 Habite Guest Doverver – Cycle 8 Habite Guest Doserver – Cycle 521 Kopter Guest Observer – Cycle 53 Kopter Guest Observer – Cycle 54 Kopter Perdicipating Sciential Program Manus Clare Roman Technology Fellowships SCHOOL Control Technology Fellowships SCH GO Cycle 32 CYCL 3 | 63
34
12
46
112 | 2
12
35 | 17%
26%
31% | Astrophysics
Astrophysics
Astrophysics | 200
152 | | | 2012
2012
2012
2012
2012
2012
2012
2012 | Ferm Guest Investigator - Cycle 6 Hubbble Guest Observer - Cycle 2 Hubbble Guest Observer - Cycle 2 Keopler Guest Observer - Cycle 5 Keopler Guest Observer - Cycle 5 Kostep Farticopting Sortinal Program Klastry Green Roman Technology Fellowships Ocycle of Solar Systems (Autor) Sy | 63
34
12
46
112
137
38 | 2
12
35
38
9 | 17%
26%
31%
28%
24% | Astrophysics
Astrophysics
Astrophysics
Astrophysics
Astrophysics | 152 | 9 proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SAT TDEM proposals that | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Guest Investigator – Cycle B **Lichtobic Guest Observer – Cycle 2 T **Lichtobic Guest Observer – Cycle 2 T **Lichtobic Guest Observer – Cycle 2 T **Kapier Parlicipating Scientist Program **Nancy Grane Roman Technology Faloushipa **Carigina of Solid Systems (Autor) **Carigina of Solid Systems (Autor) **Solid | 63
34
12
46
112
137
38
158
53 | 2
12
36
38
9
45 | 17%
28%
31%
28%
24%
28%
19% | Astrophysics
Astrophysics
Astrophysics
Astrophysics
Astrophysics
Astrophysics
Astrophysics | 152
580
30 | 9 proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SAT TDEM proposals that Of the 45 recommended for selection 7 do not receive any funding. Received 38 proposals with Budgets but on | | 2012
2012
2012
2012
2012
2012
2012
2012 | Farm Guart Investigator — Cycle 6 Hobbid Guard Diseaser — Cycle 8 Hobbid Guard Diseaser — Cycle 21 Kogler Guard Diseaser — Cycle 21 Kogler Guard Diseaser — Cycle 21 Kongran Garden — Cycle 20 Kongran of Salar Systems (Astro) Kongran of Salar Systems (Astro) Kongran of Salar Systems (Astro) Salar Kog Cycle 2 Theoristical and Computational Astrophysics Natheories Hencepheric Congradion the Moding and Manyane Alexander Computational Astrophysics Natheories | 63
34
12
46
112
137
38
158
53
85 | 2
12
35
38
9
45
10
18 | 17%
28%
31%
28%
24%
24%
28%
19%
21%
74% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science Earth Science | 152
580
30 | 9 proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SAT TDEM proposals that Of the 45 recommended for selection 7 do not receive any funding. Received 38 proposals with Budgets but on | | 2012
2012
2012
2012
2012
2012
2012
2012 | Ferm Guast Investigator — Cycle 6 HUMBOB Guast Diseaser — Cycle 8 HUMBOB Guast Diseaser — Cycle 21 Kogler Guest Observer — Cycle 21 Kogler Guest Observer — Cycle 30 Name Grane Reams Technology Felorebips Origan of Staff Systems (Actor) SSFA 60 Cycle 12 System 60 Cycle 13 Technology Smith Guart Investigator — Cycle 9 Theoretical and Computational Astrophysics Networks Almospheric Compositions Modeling and Analysis | 63
34
12
46
112
137
38
158
53
85
34
94 | 2
12
35
38
9
45
10
18
25
26 | 17%
26%
31%
28%
24%
28%
29%
19%
21%
74%
28%
20% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science Earth Science Earth Science Earth Science | 152
580
30 | B proposals totaling \$5.2M in Year 1 swards were selected. In addition, there were 4 SAT TOEM proposals that
Of the 65 recommended for selection 7 to not receive any funding. Received 35 proposals with Budgets but on the
Prince of the program is part with NSF. NSSA selected 16 proposals (2 investigations) and NSF plans to select the same | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Guest Investigator — Cycle 6 HUMB-Bid Guest Observer — Cycle 2 HUMB-Bid Guest Observer — Cycle 2 Hoggler Guest Observer — Cycle 2 Hoggler Guest Observer — Cycle 2 Hoggler Guest Observer — Cycle 5 Hoggler Guest Observer — Cycle 5 Hoggler Guest Observer — Cycle 5 Hoggler Guest Observer — Cycle 1 Hoggler — Cycle 1 Hoggler Guest Observer — Cycle 1 Hoggler Guest Hoggler — Cycle 1 Hoggler Guest Hoggler — Cycle 1 Cy | 63
34
12
46
112
137
38
158
53
85
34
94
51
63 | 2
12
35
38
9
45
10
18
25
26
10
14
8 | 17% 26% 31% 28% 28% 24% 24% 28% 19% 21% 74% 28% 20% 20% 57% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | B proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SATTDEM proposals the
Of the 65 recommended for selection 7 do not receive any funding. Received 35 proposals with Budgets but on the program is part with NGF, NASA selected 16 proposals (0 investigations) and NGF plans to relect the same | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Guest Investigator — Cycle 8 Habitoth Guest Observer — Cycle 2 Habitoth Guest Observer — Cycle 2 Habitoth Guest Observer — Cycle 2 Karjer Parlicipating Storiesta Program Nancy Grane Roman Technology Feloushypa Coligina of Solie Systems (Autor) Soliesta of Soliest Systems (Autor) Soliesta of Soliesta Systems (Autor) Soliesta of Soliesta Systems (Autor) Soliesta of Cycle 1 Cycl 1 Soliesta of Cycle 1 Soliesta of Cycle 1 Soliesta of Cycle 1 | 63
34
12
48
112
137
38
158
53
85
34
94
51
63 | 2
12
35
38
9
45
10
18
25
26
10 | 17% 28% 31% 28% 24% 28% 24% 28% 21% 74% 28% 57% 17% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | B proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SATTDEM proposals the
Of the 65 recommended for selection 7 do not receive any funding. Received 35 proposals with Budgets but on the program is part with NGF, NASA selected 16 proposals (0 investigations) and NGF plans to relect the same | | 2012
2012
2012
2012
2012
2012
2012
2012 | Farm Guest Investigator – Cycle 6 HABBOS Guest Oberever – Cycle 2 HABBOS Guest Oberever – Cycle 2 HABBOS Guest Oberever – Cycle 2 Kopier Participating Schrolar Program Nancy Grane Roman Technology Festionships Origin of Solar Systems (Autor) Nancy Grane Roman Technology Festionships Origin of Solar Systems (Autor) Strakegic Astrophysics Technology Astrophysics Composition Upper Almosphinic Composition Observations Councilla and CALIPSO Science Team Recompate Councilla and CALIPSO Science Team Recompate Earth Science U.S. Participating investigator Earth Science U.S. Participating investigator Earth Science U.S. Participating investigator Ecological Forecasting to Conservation and Natural Resource Management colforige Loudston of Earth Science Technologies Hardedoctivina Pestina Science Technologies | 63
34
12
46
112
137
38
158
53
85
34
94
51
63
14 | 2
12
35
38
9
45
10
18
25
26
10
14
8 | 17%
28%
31%
28%
24%
28%
19%
21%
74%
28%
20%
22%
57%
17% | Astrophysics Earth Science | 580
30
150 | B proposals totaling \$5.2M in Year 1 awards were selected. In addition, there were 4 SATTDEM proposals the
Of the 65 recommended for selection 7 do not receive any funding. Received 35 proposals with Budgets but on the program is part with NGF, NASA selected 16 proposals (0 investigations) and NGF plans to relect the same | | 2012
2012
2012
2012
2012
2012
2012
2012 | Ferm Goard Investigator - Cycle 8 Intablis Guard Diseaser - Cycle 8 Intablis Guard Diseaser - Cycle 8 Intablis Guard Diseaser - Cycle 9 Korjer Parlingularing Glorenica Program Nancy Grane Ramar Technology Fellowships Cycling and Grane Systems (Autor) September of Grane Systems (Autor) Sentence Administration of Cyclingularing Company Sentence Company of Cyclingularing Analysis Almospharic Composition Modeling and Analysis Almospharic Composition Upper Almospheric Composition Observations Cyclingularing Gorneo Conditions In Special Validation of Earth Science Technologies In Conventional User Charge Stepper | 63
34
12
46
112
137
38
158
53
85
34
94
51
63
14
66 | 2
12
35
38
9
45
10
18
25
26
10
14
8
11
7 | 17% 28% 28% 24% 28% 19% 21% 28% 29% 57% 17% 57% 57% 67% 67% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | Symposopals totaling 55.2M in Yoar 1 awards were selected. In addition, there were 4.5AT TOEM proposals in the 6.5M received and the 6.5M
received 35 proposals with Budgets to 10 fine 4.5 recommended for selection 7 do not microw any funding. Received 35 proposals with Budgets to 10 fines program is joint with NSF. MASA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MASA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Guest Investigator – Cycle 6 1-14066 Geart OSeveri – Cycle 8 1-14066 Geart OSeveri – Cycle 2 1-1406 Geart OSeveri – Cycle 2 1-1406 Geart OSeveri – Cycle 3 | 63
34
12
46
112
137
38
159
53
85
53
85
34
94
51
63
14
63
10
23
145
24
16
81 | 2
12
35
36
38
9
45
10
18
25
26
10
14
8
11
7
7
4
19
16 | 17% 28% 28% 24% 28% 24% 28% 21% 74% 22% 749 20% 22% 17% 17% 13% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | Symposopals totaling 55.2M in Yoar 1 awards were selected. In addition, there were 4.5AT TOEM proposals in the 6.5M received and the 6.5M received 35 proposals with Budgets to 10 fine 4.5 recommended for selection 7 do not microw any funding. Received 35 proposals with Budgets to 10 fines program is joint with NSF. MASA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MASA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the | | 2012
2012
2012
2012
2012
2012
2012
2012 | Farm Guest Investigator – Cycle 6 HABBOR Guest Tolereser – Cycle 2 HABBOR Guest Oberever – Cycle 2 HABBOR Guest Oberever – Cycle 2 Kopier Particularia, 28 – Center Parparan Nancy Crane Roman Technology Festionally Kopier of Solar Systems (Autor) Strategic Astrophysics Technology Astrophysics Composition Upper Almospheric Composition Observations Counstitat and CALIPSO Science Technologies Longistatic Editors Counstitation of Earth Strategic Properties Composition Observations Counstitation of Earth Strategic Astrophysics National Crimate Assessment Earth Science U.S. Participating investigator Coological Forcescaling for Conservation and Natural Resource Management coefficial Counstituding of Earth Strategic Astrophysics Hard Counstituding for Conservation and Natural Resource Management Land CovertLand Use Change Steps – CovertLa | 63
34
12
46
112
137
38
159
53
85
53
44
51
61
62
14
66
60
10
23
145
165
165
165
165
165
165
165
16 | 2
12
35
36
38
9
45
10
18
25
26
10
14
8
11
7
4
19
16
10
27
38 | 17% 26% 28% 24% 26% 22% 57% 13% 63% 33% 22% 54% 24% 25% 22% 57% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15 | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | Syroporable totaling 55. 3M in Year 1 awards were selected. In addition, there were 4.5M TDEM proposals the 100 file 4.5 recommended for selection 7 do not meave any funding. Received 35 eroposals with Budgets but on This program is joint with NSF. MSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSA selected 10 proposals (3 investigations) and NSF plans to select the same plans of the selection and the selection selection and the selection received the same plans of the selection selection received the selection selection received the selection received the selection received the selection rate will receive received sele | | 2012
2012
2012
2012
2012
2012
2012
2012 | Ferm Goard Investigator - Cycle B ILLABOR Goard Towers - Cycle B ILLABOR GOARD GOARD B ILLABOR G | 63
34
12
46
112
137
38
158
53
85
34
51
61
60
60
10
23
145
24
16
81
172
145
24
16
172
173
173
173
174
175
175
175
175
175
175
175
175 | 2
12
35
35
38
9
45
10
18
25
26
10
14
8
11
7
4
19
19
10
10
11
7
4
10
10
10
10
10
10
10
10
10
10
10
10
10 | 17%
26%
31%
28%
24%
24%
21%
74%
20%
22%
57%
17%
70%
17%
63%
63%
33%
24%
33%
44% | Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics Earth Science | 580
30
150 | Syroporable totaling 55. 3M in Year 1 awards were selected. In addition, there were 4.5M TDEM proposals the 100 file 4.5 recommended for selection 7 do not medieve any funding. Received 35 eroporable with Budgets but on This program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Goast Investigator — Cycle 8 Habitatio Guard Disease — Cycle 8 Habitatio Guard Disease — Cycle 8 Habitatio Guard Disease — Cycle 9
Karjee Parlinquianing Sicensian Program Nancy Grane Raman Technology February Scriptor of Solad Systems (Autor) Solates of Solad Systems (Autor) Solates of Cycle 1 Solates 1 Solates of Cycle 1 Solates of Solates 1 Solates of Cycle 1 Solates of Solates 1 Solates of Cycle 1 Solates of Solates S | 63
34
12
46
112
137
38
158
158
158
34
94
51
63
14
66
10
23
24
16
17
24
16
17
24
16
17
24
16
17
24
16
17
24
17
24
17
24
17
24
18
18
18
18
18
18
18
18
18
18
18
18
18 | 2
12
35
38
9
45
10
18
25
26
10
14
8
11
7
4
19
16
10
27
36
17
17
17
17
17
17
17
17
17
17
17
17
17 | 17% 26% 31% 24% 24% 24% 25% 44% 25% 44% 25% 44% 25% 24% 25% 25% 25% 26% 27% 27% 27% 27% 27% 27% 27% 27% 27% 27 | Astrophysics Earth Science | 152
580
30
150
120 | Symposite stating \$5.24 in Year 1 awards were selected. In addition, there were 4.581 TOEM proposals the 10th 65 received for selection of the 65 recommended for selection 7 do not necesse any funding Received 38 proposals with Budgeth but on This program is just with NSF. MASA selected 10 proposals (3 investigations) and NSF plans to select the same proposals in the 10th 10th 10th 10th 10th 10th 10th 10th | | 2012
2012
2012
2012
2012
2012
2012
2012 | Form Guest Investigator – Cycle B 14666 Gent Olsever – Cycle S Gent Olsever – Cycle S 14666 Gent Olsever – Gent Olsever – Cycle S 14666 1 | 63
34
112
46
46
1112
137
38
158
53
85
34
94
94
163
146
10
10
10
10
11
16
16
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 2
12
12
35
38
9
45
10
18
25
26
10
14
8
11
7
4
19
16
10
27
36
17
17
18
17
18
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 17% 26% 26% 31% 28% 19% 24% 28% 19% 74% 28% 20% 22% 17% 17% 17% 17% 63% 33% 22% 44% 22% | Astrophysics Earth Science | 152
580
30
150
120 | Syroporable totaling 55. 3M in Year 1 awards were selected. In addition, there were 4.5M TDEM proposals the 100 file 4.5 recommended for selection 7 do not medieve any funding. Received 35 eroporable with Budgets but on This program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (3 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same program is joint with NSF. MSSA selected 10 proposals (3 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans to select the same proposals (4 investigations) and NSF plans | | 2012 | Seospace Supporting Research Program | 134 | 16 | 12% | Heliophysics | | Step-2 only. The SR was not offered as a stand-alone element of the ROSES 2012 NRA, but it was an element of B | |--|---|------------------|------------------|--------------------------|---|------------------|--| | 2012 F | Heliophysics Data Environment Enhancements
Solar and Heliospheric Physics | 29
232 | 10
43 | 19% | Heliophysics
Heliophysics | | Step-2 only
Step-2 only | | 2012 | Cassini Data Analysis Cosmochemistry | 112
85 | 23
29 | 21%
34% | Planetary Science
Planetary Science | 150 | Of these 9 were selected as participating scientists as well. Two more partial awards were made. The average awar | | 2012 lt | n-Space Propulsion
aboratory Analysis of Returned Samples | 25
24 | 3
8 | 12%
33% | Planetary Science
Planetary Science | 100
230 | 1 also received bridge funding, not included in the 8 given in column E. | | 2012 L | ADEE Guest Investigator Program unar Advanced Science and Exploration Research | 18
102 | 5
13 | 28%
13% | Planetary Science
Planetary Science | 98
100 | | | 2012 N | Mars Data Analysis
Mars Fundamental Research (MFRP) | 93
123 | 29
30 | 24% | Planetary Science
Planetary Science | 101
114 | | | 2012 N | Maturation of Instruments for Solar System Exploration (MatISSE) Maven Participating Scientist Program | 35
35 | 6
7 | 20% | Planetary Science
Planetary Science | 871
107 | Stats given are for US investigations only. Non-US Institutions: 2/9 (22%) selection rate | | 2012 N | vloon and Mars Analog Mission Activities (MMAMA)
Near Earth Object Observations (NEOO) | 27
26 | 3
12 | 46% | Planetary Science
Planetary Science | 546 | Note that the avg award size has nearly doubled from previous years, due in large part to HEO's lack of field campa | | 2012 C
2012 C
2012 F | Origins of Solar Systems (Planetary) Outer Planets Research | 101
143 | 13
32 | 22% | Planetary Science
Planetary Science | | In addition there was a single one year "bridge" award. Updated 8/13 need to update average first year award | | 2012 F | Planetary Astronomy (PAST) Planetary Atmospheres (PATM) | 42
90 | 7 | 13% | Planetary Science
Planetary Science | 112 | Award sizes ranged from \$37K to \$160K. Hope to make more selections later in the year
12 full plus two partial selections as well. Award size is \$108K when partials averaged in with full awards. Awards ra | | 2012 F | Planetary Geology and Geophysics (PGG)
Planetary Mission Data Analysis | 140
41 | 19
13 | 14%
32% | Planetary Science
Planetary Science | 101 | Average award size does not include Carto, NESSF, ECF, etc. Plus 6 seed or bridge awards | | 2012 F | Planetary Protection Research
Astrophysics Data Analysis | 21
278 | 1
63 | 5%
23% | Planetary Science
Astrophysics | 150
101 | NOTE: Was covered by the MATisse Program | | 2011 A | Astrophysics Research and Analysis | 163
199 | 31
33 | 19% | Astrophysics
Astrophysics | 13/ | | | 2011 F
2011 H
2011 N | Fermi Guest Investigator – Cycle 5
Kepler Guest Observer – Cycle 4 | 224
61 | 67
21 | 30%
34% | Astrophysics
Astrophysics | 80
59 | 65 normal and 2 large awards made. Average for the 65 one and two year proposals was ~ 80 K (75 K for one year,
Plus 4 from foreign Pla/institutions.17 proposals were funded.Proposals due: 20 January 2012, Proposers notified of | | 2011 N | Nancy Grace Roman Technology Fellowships
Origins of Solar Systems (Astro) | 16
36 | 3 | 19%
8% | Astrophysics
Astrophysics | 195
223 | | | 2011 8 | Strategic Astrophysics Technology Swift Guest Investigator - Cycle 8 poportunities in Education and Public Outreach for Earth and Space Science EPOESS - Opportunities in Education and Public Outreach for Earth and Space Science EPOESS | 48
152 | 10
32 | | Astrophysics
Astrophysics | | 50 submitted but 2 were non compliant. Including additional late selections only 28 Accepted for funding | | 2011 S
2011 C | Opportunities in Education and Public Outreach for Earth and Space Science EPOESS Opportunities in Education and Public Outreach for Earth and Space Science EPOESS | 75
74 | 19 | 21%
25% | Cross division
Cross division | 185 | 134 days after the May 20 proposal due date | | | Apportanties in Education and Politic Guineach for Roses Investigators I Supplemental Education Awards for Roses Investigators I Supplemental Outreach Awards for Roses Investigators I | 23 | 5 | 24%
22% | Cross division
Cross division | | l indicates the Sept 2010 due date
l indicates the Sept 2010 due date | | | Supplemental Cultimeter Walter for NOSES Investigation 1 ACCESS Advancing Collaborative Connections for Earth System Science Advanced Information Systems Technology | 37 | 12
18 | 20%
32%
20% | Earth Science | 10 | I molecules the 3ept 2010 due date | | | Atmospheric Composition: Laboratory Research |
50
62 | 16
18 | | Earth Science
Earth Science
Earth Science | | | | | Zarbon Monitoring System Computational Modeling Algorithms and Cyberinfrastructure Earth Science Applications: Disasters | 54
65 | - 8 | 29%
15% | Earth Science | | | | | arth Science Applications: Disasters
Earth Science Applications: Water Resources
Earth Science Applications: Wildland Fires | 65 | 17
12 | 26%
18% | Earth Science
Earth Science | | | | 2011 E | arth Science Applications: Wildland Fires SMSS Remote Sensing Science Team furricane Science Research Program | 46
21 | 17
9 | 37%
43% | Earth Science
Earth Science | | | | | tyspIRI Preparatory Airborne Activities and Associated Science | 50
49 | 11
14 | 22%
29% | Earth Science
Earth Science | | | | 2011 le
2011 le | ceBridge
ceSAT 2 Science Definition Team | 33
35 | 9
16 | 27%
46% | Earth Science
Earth Science | | | | 2011 li | mpacts of Climate Variability and Change on NASA Centers and Facilities Interdisciplinary Research in Earth Science and Covert.and Use Change Step-1 | 11
51 | 6
9 | 55%
18% | Earth Science
Earth Science | | | | 2011 L | and Cover/Land Use Change Step-1 and Cover/Land Use Change Step-2 | 90
26 | 26
10 | 29%
38% | Earth Science
Earth Science | | the overall selection rate was 10/90 = 11% | | 2011 N | .and CoveriLand Use Change Step-2
lew (Early Career) Investigator Program in Earth Science
"hysical Oceanography" | 73
40 | 15
9 | 21%
23% | Earth Science
Earth Science | 88 | | | 2011 5 | Physical Oceanography
Satellite Calibration Interconsistency Studies
Science Definition Team for the DESDyni-Radar Mission | 41
38 | 11
15 | 27%
39% | Earth Science
Earth Science | | | | 2011 8 | Science Team for the OCO-2 Mission
SERVIR Applied Sciences Team | 30
58 | 24 | 80% | Earth Science
Earth Science | | | | 2011 5 | Space Archaeology
Ferrestrial Ecology | 17
107 | 6
16 | 35%
15% | Earth Science
Earth Science | 230 | Final selection made in late May 2012 | | 2011 | Seospace Science
Heliophysics Data Environment Enhancements | 145 | 29 | 20% | Heliophysics
Heliophysics | 144
78 | The average award amount is somewhat more complicated than implied: the average for the three categories within | | 2011 F | teliophysics Guest Investigators Program (Geospace) | 80
91 | 10 | 13% | Heliophysics
Heliophysics | 122
105 | | | 2011 L | Heliophysics Guest Investigators Program (S&H only) iving With a Star Targeted Research and Technology stroblebox Cearge and Technology (Systologica Phanete (ASTED)) | 91
122
23 | 12
31
2 | 25% | Heliophysics
Heliophysics
Planetary Science | 161 | 129 proposals were received but 7 were deemed non-compliant | | 2011 6 | Astrobiology Science and Technology for Exploring Planets (ASTEP) Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology Science and Technology Instrument Development (ASTID) | 23
37
161 | 2
7
28 | 19% | Planetary Science
Planetary Science
Planetary Science | 292 | One of the two awards was not full funding. including 2 partial selections, 4 pilot studies. | | 2011 | Astrobiology: Exobiology and Evolutionary Biology
Cassini Data Analysis | 92 | 18 | 20% | Planetary Science | 89 | 92 proposals from US institutions, 8 of the 18 selected included Participating Scientist (PS) awards as well | | 2011 | Cosmochemistry
GRAIL Guest Scientist Program | 80
24 | 27
9 | 38% | Planetary Science
Planetary Science | 65 | PME proposal not included. 27 full selects, 2 partial bridge funding awards not included in selected column | | 2011 L | aboratory Analysis of Returned Samples.
unar Advanced Science and Exploration Research | 17
123 | 5
26 | 21% | Planetary Science
Planetary Science | 119
117 | | | 2011 N | Mars Data Analysis
Mars Fundamental Research (MFRP) | 98
128 | 21
20 | 16% | Planetary Science
Planetary Science | 105
93 | | | 2011 N | Moon and Mars Analog Mission Activities (MMAMA)
Vear Earth Object Observations (NEOO) | 32
33 | 5
14 | 16%
42% | Planetary Science
Planetary Science | 42
407 | | | 2011 0 | Origins of Solar Systems (Planetary) Outer Planets Research | 103 | 20
27 | 19%
21% | Planetary Science
Planetary Science | 100
105 | | | 2011 F | Planetary Astronomy (PAST) | 60
106 | 14
23 | 23%
22% | Planetary Science
Planetary Science | 99
114 | Also one partial (1 Yr) selection not included. This is actually out of 61 proposals because I took on one P | | 2011 F | Planetary Geology and Geophysics (PGG) Planetary Instrument Definition and Development | 128
91 | 31
11 | | Planetary Science
Planetary Science | 98
273 | Average award size does not include Carto, NESSF, ECF, etc. Also 6 seed or bridge awards | | 2011 F
2011 F
2011 F | Planetary Mission Data Analysis
Planetary Protection Research | 45
19 | 12 | 12%
27%
16% | Planetary Science
Planetary Science | 107 | In addition to the 3 full selections (one for three years in duration, two for four years in duration) two more were sele- | | | Astrophysics Data Analysis Astrophysics Research and Analysis | 186
166 | 66
39 | | Astrophysics
Astrophysics | 86
275 | | | 2010 # | estrophysics research and Analysis
skrophysics Theory Program
Fermi Guest Investigator – Cycle 4 | 193
208 | 33
87 | 17% | Astrophysics | 139 | This refers to proposals, not investigations suborbital projects may be split | | 2010 H | Kepler Guest Observer – Cycle 3 | 40 | 22 | 42%
55% | Astrophysics
Astrophysics | | | | 2010 N | Kepler Participating Scientists 2
Wembers of the Euclid Science Team | 30 | 12 | 40%
0% | Astrophysics
Astrophysics | | Success rate by dollars awarded/requested = \$1.0M/\$2.75M = 36% | | 2010 C | Drigins of Solar Systems (Astro)
Strategic Astrophysics Technology
Suzaku Guest Observer - Cycle 6 | 36
59 | 6
17 | 17%
29% | Astrophysics
Astrophysics | 109 | | | 2010 S | Suzaku Guest Observer - Cycle 6
Swift Guest Investigator - Cycle 7
Jpportunities in Education and Public Outreach for Earth and Space Science EPOESS | 91
168 | 40
39 | 44%
23% | Astrophysics
Astrophysics | 20 | Notified on 28 February 2011 101 days after due date (by posting the target list on the Suzaku web page)
61 proposals were selected (for time) out of a total of 182 submitted, which represents ~34% success rate, but those | | 2010 IS | Supplemental Education Awards for ROSES Investigators 1 | 92
17 | 22
6 | 24%
35% | Cross division
Cross division | | I indicates the Sept 2010 due date | | 2010 5 | Supplemental Education Awards for ROSES Investigators II
Supplemental Outreach Awards for ROSES Investigators I | 16
12 | 5
6 | 31%
50% | Cross division
Cross division | | II indicates the March 2011 due date
I indicates the Sept 2010 due date | | 2010 S
2010 A | Supplemental Outreach Awards for ROSES Investigators II coelerating Operational Use of Research Data divanced Component Technology (ACT) | 12
28 | 6
12 | 50%
43% | Cross division
Earth Science | | II indicates the March 2011 due date | | 2010 A | Atmospheric Composition: Aura Science Team | 99
44 | 15
27 | 15%
61%
31% | Earth Science
Earth Science | | One was non compliant so it was 15/98 viable proposals | | 2010 | Almospheric Composition: Modeling and Analysis
Carbon Cycle Science | 59
139 | 18
34 | 24% | Earth Science
Earth Science | | | | 2010 | Carbon Monitoring System CLARREO Science Team | 24
21 | 16
11 | 67%
52% | Earth Science
Earth Science | | | | 2010 C | Cimate and Biological Response: Research and Applications | 152
47 | 15
16 | 10%
34% | Earth Science
Earth Science | | | | 2010 E | Zyospheric Science
zarth Science Applications Feasibility Studies: Public Health
zarth Science U.S. Participating Investigator | 24
16 | 9 | 38%
38% | Earth Science
Earth Science | | | | 2010 E | Earth Surface and Interior Earth System Data Records Uncertainty Analysis | 39
41 | 20
21 | 51%
51% | Earth Science
Earth Science | | | | 2010 | Seodesv | 20 | 15 | 75%
48% | Earth Science
Earth Science | | | | 2010 F | Seodetic Imaging
IyapiRI Preparatory Activities Using Existing Imagery
nstrument Incubator | 19 | 5 | 26% | Earth Science
Earth Science | | | | 2010 | | 49
15 | 7 6 | 14% | Earth Science
Earth Science | | The selection rate is for all proposers. There were only 25 step-2 proposals so the selection rate for step-2 proposer | | 2010 | Modeling, Analysis, and Prediction
MASA Energy and Water Cycle Study
MPP Science Team for Climate Data Records | 96
71 | 18 | 19% | Earth Science
Earth Science | | | | 2010 | Ocean Salinity Field Campaign | 18 | 7 | 39% | Earth Science
Earth Science | | | | 2010 S
2010 S | Ocean Sallinity Science Team
Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS)
Seossace Science | 117
119 | 11
66
25 | 56% | Earth Science
Earth Science
Heliophysics | 400 | Avg new award in program year 1: LCAS = 220 K; IDP = N/A and Reg = 124 K | | 2010 F | Jeospace Science Heliophysics Data Environment Enhancements Heliophysics Theory | 119
18
32 | 25
10
10 | 56% | Heliophysics
Heliophysics
Heliophysics | 132
68
369 | | | 2010 L | iving With a Star Targeted Research and Technology | 32
141
175 | 31
30 | 22% | Heliophysics | | | | 2010 8 | Solar and Heliospheric Physics
strobiology Science and Technology for Exploring Planets (ASTEP) | 37 | 5 | 14% | Heliophysics
Planetary Science | 959 | Avg new award in program year 1: LCAS = 326 K; IDP = 171 and Reg = 125 K | | 2010 / | Astrobiology Science and Technology Instrument Development (ASTID) | 42
159 | 8
31 | 19% | Planetary Science
Planetary
Science | 279
160 | 137 proposals received, 1 declared non-compliant and returned, 136 reviewed; 32 fully selected, 6 partially selected | | 2010 C | Cassini Data Analysis Cosmochemistry | 79
60 | 16
24 | 40% | Planetary Science
Planetary Science | 83
156 | Triage letters sent after 140 days. Final Letters sent after 290 days. Selectables remain pending budget. PME proposal not included. 24 full selects. 6 partial bridge funding awards not included in selected column | | 2010 li | n-Space Propulsion
.aboratory Analysis of Returned Samples | 12
20 | 3
9 | 25%
45% | Planetary Science
Planetary Science | 250
337 | Each for a \$250K, 6 month Phase-I study effort "with the possibility to continue via down-select to Phase II and Phase | | 2010 L
2010 M | unar Advanced Science and Exploration Research Mars Data Analysis | 121
95 | 23
24 | 19%
25% | Planetary Science
Planetary Science | 132
95 | | | 2010 M | Mars Fundamental Research (MFRP) Moon and Mars Analog Mission Activities (MMAMA) | 128
16 | 25
6 | 20%
38% | Planetary Science
Planetary Science | 112
58 | Plus two partial selections | | 2010 M | MSL Participating Scientists Program Jear Farth Object Observations (NEOO) | 148
15 | 29
0 | 20%
0% | Planetary Science
Planetary Science | N/A | We were hoping to be able to fund with the anticipated plus-up to the NEOO program but we were under a CR that it | | 2010 0 | Origins of Solar Systems (Planetary) Outer Planets Research | 93
123 | 17
29 | 18%
24% | Planetary Science
Planetary Science | 102 | One full PME not included here. Triage letters sent after 140 days, final letters sent after 290 days. Selectables remains a sent after 290 days. | | 2010 F | Planetary Astronomy (PAST) | 45
93 | 10
25 | 22%
27% | Planetary Science
Planetary Science | 89
107 | only 9 full one was a partial (one year) award | | 2010 F | Planetary Geology and Geophysics (PGG) Planetary Instrument Definition and Development | 106
96 | 30
11 | 28%
11% | Planetary Science
Planetary Science | 98
269 | Max thinks that there were 9 additional partial selections this year | | 2010 F | Planetary Mission Data Analysis Planetary Protection Research | 18 | 6 | 33% | Planetary Science
Planetary Science | 80
160 | | | 2009 / | Astrophysics Data Analysis Astrophysics Research and Analysis | 165
143 | 73
45 | 44% | Astrophysics
Astrophysics | | This refers to proposals, not investigations suborbital projects may be split | | 2009 A
2009 F | estrophysics research and Analysis
skrophysics Theory Program
Fermi Guest Investigator – Cycle 3 | 200
182 | 37
77 | 19% | Astrophysics
Astrophysics | 120 | This refers to proposals, not investigations – supprotes may be spir. 36 selected 10/21/2009. Addnl selection 2/23/2010 | | 2009 | SALEX Guest investigator – Cycle 6 | 81 | 33
27 | 41% | Astrophysics | | | | 2009 F | Kepler Guest Observer – Cycle 2
MOST LLS: Guest Observer – Cycle 2 | 54
12 | 27
4 | 33% | Astrophysics
Astrophysics | | | | 2009 IS | Origins of Solar Systems (Astro)
SPICA Science Investigation Concept Studies | 30 | 9 | 100% | Astrophysics
Astrophysics | 93 | | | 2009 8 | Suzaku Guest Observer - Cycle 5
Swift Guest Investigator - Cycle 6
Fechnology Development for Exoplanet Missions | 88
169 | 48
56 | 33% | Astrophysics
Astrophysics | | | | 2009 S | echnology Development for Exoplanet Missions | 34
103 | 7
27 | 21%
26% | Astrophysics
Cross division | Ŀ | | | 2009 S
2009 T
2009 C | Opportunities in Education and Public Outreach for Earth and Space Science EPOESS | 103 | | | | | | | 2009 S
2009 D
2009 S
2009 S | Opportunities in Education and Public Outreach for Earth and Space Science EPOESS Supplemental Education Awards for ROSES Investigators. I Supplemental Education Awards for ROSES Investigators II | 10 | 7 | 70%
70% | Cross division
Cross division | 21 | | | 2009 S
2009 T
2009 S
2009 S
2009 S
2009 S | Opportunities in Education and Public Outreach for Earth and Space Science EPOESS
Supplemental Education Awards for ROSES Investigators 1
Supplemental Education Awards for ROSES Investigators II
Supplemental Outreach Awards for ROSES Investigators I
Supplemental Outreach Awards for ROSES Investigators II | 10
10
9 | 7
7
6
6 | 70%
67%
67% | Cross division
Cross division
Cross division | 17 | | | 2009 S
2009 C
2009 S
2009 S
2009 S
2009 S
2009 S
2009 S
2009 S | Opportunities in Education and Public Outreach for Earth and Space Science EPOESS Supplemental Education Awards for ROSES Investigators: I Supplemental Education Awards for ROSES Investigators II Supplemental Outreach Awards for ROSES Investigators I | 10
10
9 | 7
7
6 | 70%
67%
67%
31% | Cross division
Cross division | 17 | | | 2009 A 2009 C 2009 E 2009 E 2009 B C | Interapheric Composition Mol Lathold Antomac Circus Propertificati Science Experiment Immospheric Composition Molderig and Analysis and CALPSO Science Team Recompete Southerland CALPSO Science Team Recompete National Confession Company (National Company | 26
77
83
54
35
30
26
28 | 14
18
33
13
5
14
11 | 54%
23%
40%
24%
14%
47%
42% | Earth Science | | | |---|---|--|---------------------------------------|---|---|-------------------
--| | 2009 E 2009 E 2009 E 2009 E 2009 H 2009 H 2009 H 2009 H 2009 L 2009 L 2009 C | arth Science for Decision Making: Gulf of Mexico Region SSP Venture-class Science Investigations: Earth Venture-1 lory Science Team unricane Field Experiment yspiRI Preparatory Activities Using Existing Imagery Belfridge | 54
35
30
26
28 | 13
5
14
11 | 24%
14%
47%
42% | Earth Science Earth Science Earth Science Farth Science | | | | 2009 C 2009 H 2009 K | Ilory Science Team
urricane Field Experiment
typaPRI Preparatory Activities Using Existing Imagery
reBridge | 26
28 | 11 | 47%
42% | Earth Science | | | | 2009 | teBridge | | | | | | | | 2009 Ir
2009 L
2009 N
2009 C
2009 C
2009 P
2009 P
2009 R
2009 S
2009 S | | 44 | 22 | 21%
50% | Earth Science
Earth Science | | | | 2009 N
2009 C
2009 C
2009 P
2009 P
2009 R
2009 S
2009 S | teBridge: Support for 2010 Activities
herdisciplinary Research in Earth Science
and CoverfLand Use Change | 6
112
62 | 5
25 | 83%
22%
15% | Earth Science
Earth Science
Earth Science | | | | 2009 P
2009 P
2009 P
2009 R
2009 S
2009 S | and Coveritand Use Change Lew (Early Career) Investigator Program in Earth Science Idean Biology and Biogeochemistry | 71
34 | 18
8 | 25%
24% | Earth Science
Earth Science | | | | 2009 S
2009 S
2009 S | cean vector winds Science Team
frysical Oceanography | 38 | 20 | 53% | Earth Science
Earth Science | | | | 2009 S | recipitation Science
temote Sensing Theory | 126
112 | 58
20 | 46%
18% | Earth Science
Earth Science | | | | | pace Archaeology
tudiEarth Science with ICEarth Scienceat and CryoSat-2 | 12
37 | 6
15 | 50%
41% | Earth Science
Earth Science | | | | 2009 T | errEarth Sciencetrial Ecology
he Science of Terra and Aqua | 64
325 | 12
87 | 19%
27% | Earth Science
Earth Science | | | | 2009 C | auses and Consequences of Solar Cycle 24 CCMSC
auses and Consequences of the Minimum of Solar Cycle 24 | 56
58 | 15
15 | 27%
28% | Heliophysics
Heliophysics | 109 | | | 2009 H | leospace Science
leliophysics Data Environment Enhancements
leliophysics Guest Investigators Program (Geospace) | 70
18
74 | 16
11
14 | 23%
61%
19% | Heliophysics
Heliophysics
Heliophysics | 150
67
114 | | | 2009 H | leilophysics Guest Investigators Program (Geospace)
leliophysics Guest Investigators Program (S&H only)
iving With a Star Targeted Research and Technology | 66
137 | 15
31 | 23% | Heliophysics
Heliophysics | 103 | | | 2009 S | iolar and Heliospheric Physics
strobiology: Exobiology and Evolutionary Biology | 120
136 | 20
40 | 17% | Heliophysics
Planetary Science | 129
155 | Avg new award in program year 1: LCAS = 330 K; IDP = 220 K and Reg = 113 K
137 proposals received. 1 declared non-compliant and returned. 136 reviewed; 32 fully selected, 6 partially select | | 2009 C | assini Data Analysis
comochemistry | 80
62 | 23
29 | 29%
47% | Planetary Science
Planetary Science | 89
148 | | | 2009 L | tawn at Vesta Participating Scientists
aboratory Analysis of Returned Samples | 60
21 | 18
12 | 30%
57% | Planetary Science
Planetary Science | 62
215 | | | 2009 L
2009 N
2009 N | unar Advanced Science and Exploration Research
tars Data Analysis | 96
105 | 31
39
26 | 32%
37%
20% | Planetary Science
Planetary Science | 104
102 | | | 2009 N | tars Fundamental Research (MFRP) foon and Mars Analog Mission Activities (MMAMA) lear Earth Object Observations (NEOO) | 131
NA
21 | 26
NA
11 | 20%
NA
52% | Planetary Science
Planetary Science
Planetary Science | 96
NA
312 | Not Solicited in ROSES 2009 | | 2009 C | Ingains of Solar Systems (Planetary) Julier Planets Research Julier Planets Research | 101 | 29 | 29% | Planetary Science
Planetary Science | 97 | | | 2009 P | filanetary Astronomy (PAST)
filanetary Almospheres (PATM) | 35
96 | 10 | 29% | Planetary Science
Planetary Science | 105 | | | 2009 P | fanetary Geology and Geophysics (PGG) fanetary Instrument Definition and Development | 114
110 | 36
15 | 32%
14% | Planetary Science
Planetary Science | 78
258 | | | 2009 P | fanetary Mission Data Analysis
fanetary Protection Research | 41
10 | 15
6 | 37%
60% | Planetary Science
Planetary Science | 89
137 | | | 2008 A | strophysics Data Analysis
strophysics Research and Analysis | 95
137 | 34
37 | 36%
27% | Astrophysics
Astrophysics | 267 | Letters sent 10/20 Total proposed = 134 if you include Co-I proposals. 125 independent investigations proposed. 28 ful | | 2008 F | strophysics Theory Program ermi Guest Investigator - Cycle 2 All EX Guest Investigator - Cycle 5 | 177
198 | 39
81
37 | 22%
41%
53% | Astrophysics
Astrophysics | 111 | emails selecting 30 on 10/27/08 and nine additional selections were made in Feb. 2009 There is one foreign proposal 3/40/04/sep. responsed. 13/09 krap selected. | | 2008 K | ALEX Guest Investigator - Cycle 5 lepler Guest Observer - Cycle 1 IOST U.S. Guest Observer- Cycle 1 | 70
19
12 | 37
11
4 | 53%
58%
33% | Astrophysics
Astrophysics
Astrophysics | | 3400ksec proposed, 1300 ksec selected Two were to foreign PIs | | 2008 S | uzaku Guest Observer - Cycle 4
wift Guest Investigator - Cycle 5 | 12
99
154 | 34
57 | 34%
37% | Astrophysics
Astrophysics
Astrophysics | 38 | 1 grant at 135 K, a bunch of grants at 38 and a few at 25 K and some smaller ones and 13 unfunded foreign Pis | | 2008 A | pplied Information Systems Research poportunities in Science Mission Directorate Education and Public Outreach | 110
74 | 12
18 | 11%
24% | Cross division
Cross division | 151 | email sent March 27, 2009. Official letters went out 4/10/2009 Average total for the entire duration of the award was 426,000 | | 2008 C | brigins of Solar Systems
Supplemental Education I (Dec 08 due date) | 94
16 | 31
6 | 33%
38% | Cross division
Cross division | | This is the total for the entire cross division program both Astro and PSD | | 2008 S | supplemental Education II (April 09 due date)
supplemental Outreach I (Dec 06 due date) | 15
12 | 5
7 | 33%
58% | Cross division
Cross division | | | | 2008 A | Applemental Outreach II (April 09 due date) dvanced Component Technology (ACT) | 19
85
100 | 10
16
20 | 53%
19%
20% | Cross division Earth Science | | budgets under negotiation, ~ 1M each over three years | | 2008 A | dvanced Information Systems Technology (AIST)
Imospheric Composition, field: Surface, Balloon, and Airborne Observations | 100
56
51 | 20
37
19 | 20%
66%
37% | Earth Science
Earth Science
Earth Science | | A total dollar value over a three-year period of approximately \$25 million | | 2008 B | Imospheric Composition: Laboratory Research
iodiversity
arbon Oycle Science | 54
offerred this y | 9 | 17% | Earth Science
Earth Science | | | | 2008 C | Another Cycle Science Typospheric Science Recision Support through Earth Science Research Results | offerred this y | | 25% | Earth Science
Earth Science | | Initial selections announced: 4/24/2009, then addnl selections 5/12/2009) | | 2008 E | arth Science Applications Feasibility Studies arth Science for Decision Making: Gulf of Mexico Region | 80 | 31
35 | 39%
51% | Earth Science
Earth Science | | Initial selections announced: 4/24/2009, then addn! selections 5/12/2009) 26 selected in may, +9 more 8/20/09 | | 2008 E | arth Science U.S. Participating Investigator | 16
118 | 6
30 | 38%
25% | Earth Science
Earth Science | | | | 2008 H | lurricane Science Research CESat-II Science Definition Team | 51
38 | 17
14 | 33%
37% | Earth
Science
Earth Science | | 3 additional selections made 1/23/09
14 of 38 SDT selected; 1 Team Leader selected on 9/18/08 | | 2008 N | and Cover/Land Use Change
fodeling, Analysis, and Prediction | 66
158 | 18
52 | 27%
33% | Earth Science
Earth Science | | Received 66 step1 proposals, out of which 48 proposals were invited to submit full proposals. Selected 18 propo | | 2008 C | ASA Energy and Water Cycle Study - Water Quality locan Biology and Biogeochemistry locan Salinity Science Team | 16
50
41 | 10
15 | 25%
20%
37% | Earth Science
Earth Science
Earth Science | | intial selections 10/17/08 two more made 3/13 | | 2008 P | Coan Saliniy Science Feari
Nysical Oceanography
MAP Science Definition Team | 26 | 12 | 46%
32% | Earth Science
Earth Science | | | | 2008 T | errestrial Ecology
Seospace Science | 77
96 | 20
26 | 26%
27% | Earth Science
Heliophysics | 146 | Results for subelements 182 (Decadal Survey Mission Preparation and Scoping Studies) only 9 selected 1/16/20
Avg new award in program year 1: LCAS = 483 K; IDP = 102 K and Reg = 119 K | | 2008 B | suest Investigator Studies with C/NOFS
leliophysics Guest Investigators Program (Geospace) | 22
62 | 5 | 23%
24% | Heliophysics
Heliophysics | 115 | The state of s | | 2008 L | leliophysics Guest Investigators Program (S&H only)
iving With a Star Targeted Research and Technology | 70
105 | 26
34 | 37%
32% | Heliophysics
Heliophysics | 104 | | | 2008 S | iving With a Star Targeted Research and Technology: Strategic Capability
olar and Heliospheric Physics | 131 | 2
35 | 50%
27% | Heliophysics
Heliophysics | | Avg new award in program year 1: LCAS = 621 K; IDP = 133 K and Reg = 115 K | | 2008 A | olar Dynamics Observatory Science Center
strobiology Science and Technology Instrument Development (ASTID) | 8
72
113 | 2
8
28 | 25%
11%
25% | Heliophysics
Planetary Science | 700
250
136 | 5 years each at 700 K/year | | 2008 C | strobiology: Exobiology and Evolutionary Biology
iassini Data Analysis
oncept Studies for Human Tended Suborbital Science | 61
17 | 22 | 36%
6% | Planetary Science
Planetary Science
Planetary Science | | 2 additional selections made in June 2009 | | 2008 C | cosmochemistry upiter Data Analysis | 68 | 31
14 | 46%
35% | Planetary Science
Planetary Science | 153
101 | | | 2008 L | unar Advanced Science and Exploration Research
unar and Planetary Science U.S. Participating Investigator (SALMON H1) | 27
17 | 11
5 | 41%
29% | Planetary Science
Planetary Science | 92 | 5 selected doesn't inclue one in the selectable category. Grant sizes range from 50-259 K | | 2008 N | fars Data Analysis
fars Fundamental Research (MFRP) | 88
94 | 32
21 | 36%
22% | Planetary Science
Planetary Science | 109 | | | 2008 N | Ioon and Mars Analog Mission Activities (MMAMA)
lear Earth Object Observations (NEOO) | 38
15 | 11
5 | 29%
33% | Planetary Science
Planetary Science | 325 | | | 2008 C
2008 P | higins of Solar Systems (Planetary) ulter Planets Research fametary Astronomy (PAST) | 73
110
46 | 19
24
18 | 26%
22%
39% | Planetary Science
Planetary Science
Planetary Science | 112 | PSD only
Additional selections were made in Sept 09 and again in Nov. Some selectables may remain. 110 proposals we | | 2008 P | fanetary Almospheres (PATM)
fanetary Geology and Geophysics (PGG) | 81
114 | 32 | 40%
26% | Planetary Science
Planetary Science | 125 | | | 2008 P | fanetary Instrument Definition and Development
fanetary Mission Data Analysis | 95
28 | 16
11 | 17%
39% | Planetary Science
Planetary Science | 244
116 | New awards in 2009 range from less than 50 to over 200 K | | 2008 S | fanetary Protection Research
ample Return Laboratory Instruments and Data Analysis | 5
28 | 2
15 | 40%
54% | Planetary Science
Planetary Science | 120
245 | | | 2007 A | strophysics Data Analysis
strophysics Research and Analysis | 100
151 | 49
41 | 49%
27% | Astrophysics
Astrophysics | | 40.4 | | 2007 A | strophysics Strategic Mission Concept Studies strophysics Theory Program | 43
184 | 19
37 | 20% | Astrophysics
Astrophysics | 680
112 | | | 2007 F | USE Guest Investigator Cycle 9
USE Legacy Science Program
ALEX Guest Investigator Cycle 4 | Cancelled
Cancelled
100 | Cancelled
Cancelled
35 | Cancelled
Cancelled
35% | Astrophysics
Astrophysics
Astrophysics | | Cancelled
Cancelled | | 2007 G | ALEX Guest Investigator Cycle 4 ELAST Cycle I epter Participating Scientists | 100
167
37 | 35
44
8 | 35%
26%
22% | Astrophysics
Astrophysics
Astrophysics | | | | 2007 S | epter r-anuspaining scientists uzaku Guest Observer - Cycle 3 wift Guest Investigator Cycle 4 | 120
144 | 79
49 | 66%
34% | Astrophysics
Astrophysics | | | | 2007 A | pplied Information Systems Research
trigins of Solar Systems | Deferred
104 | Deferred
27 | Deferred
26% | Cross division
Cross division | 87 | | | 2007 A | ccelerating Operational Use of Research Data
CCESS Advancing Collaborative Connections for Earth System Science | 16
31 | 6
10 | 38%
32% | Earth Science
Earth Science | 320 | budgets being negotiated
two year awards | | 2007 A | irborne Instrument Technology Transition Imospheric Composition: Aura Science Team Imospheric Composition: Science Advisory Group for the Glory Science Mission | 35
76 | 5
39 | 14%
51% | Earth Science
Earth Science | | | | 2007 C | Imospheric Composition: Science Advisory Group for the Glory Science Mission
arrbon Cycle Science
tryospheric Science | 12
113
54 | 12
35
20 | 100%
31%
37% | Earth Science
Earth Science
Earth Science | 42
245 | Selected 7/13/07 The average 3-year grant size is \$734K (year by year averages: Yr1-\$245K, Yr2-\$252K, Yr3-\$236K). The range Budgets under negotiation. It is currently estimated that total funding for the selected investigations will total \$9 | | 2007 E | ecision Support through Earth Science Research Results | 120
58 | 33
21 | 28%
36% | Earth Science
Earth Science | | | | 2007 E | arthScope: The InSAR and Geodetic Imaging Component
instrument Incubator Program | 20
78 | 12
21 | 60%
27% | Earth Science | 1049 | 6 Million total over the life of the awards | | 2007 L
2007 N | and-Cover/Land-Use Change
IASA Energy and Water Cycle Study | 77
48 | 17
10 | 22%
21% | Earth Science
Earth Science | | | | 2007 N
2007 C | lew (Early Career) Investigator Program in Earth Science
trean Biology and Biogeochemistry | 78
8 | 18 | 23%
13% | Earth Science | | | | 2007 IP | Icean Surface Topography Science Team
flysical Oceanography | 60
37 | 27
11 | 45%
30%
41% | Earth Science
Earth Science | | 205 total way the duration of the green | | 2007 IT | pace Archaeology errestrial Ecology errestrial Hydrology | 17
59
49 | 7
10 | 41%
17%
18% | Earth Science
Earth Science
Earth Science | | 265 total over the duration of the grant | | | errestnal Hydrology
ropospheric Chemistry: Arctic Research of the Composition of the Troposphere from Aircraft
find Lidar Science | 73
13 | 9
41
5 | 18%
56%
38% | Earth Science
Earth Science
Earth Science | 150 | | | 2007 G | wind Liber's clerice teospace Science teliophysics Guest Investigators Program (Geospace) | 85
64 | 32
20 | 38%
31% | Heliophysics
Heliophysics | 158
120 | Avg new award in program year 1 for Geospace SR&t is 158 but it breaks out as follows: LCAS = 448 K; IDP = 1
This number is approximate. Average was 116 for S&H portion (not Geospace) | | 2007 H | leliophysics Guest Investigators Program (S&H only)
leliophysics Theory | 80
25 | 29
10 | 36%
40% | Heliophysics
Heliophysics | 121 | The averages of awards for FY2009 and 2010 are \$436K | | 2007 L | iving With a Star Space Environment Testbeds
iving With a Star Targeted Research and Technology | Cancelled
163 | Cancelled
51 | Cancelled
31% | Heliophysics
Heliophysics | 110 | cancelled | | 2007 L | iving with a Star Targeted Research and Technology: Strategic Capability
olar and Heliospheric Physics | Deferred
78 | Deferred
28 | Deferred
36% | Heliophysics
Heliophysics | 191 | Deferred Avg new award in program year 1 for SHP SR&T is 191 but it breaks out as follows: LCAS = 490 K; IDP = 154 K | | 2007 S | irtual Observatories for Heliophysics Data
strobiology Science and Technology for Exploring Planets (ASTEP)
ethylology Science and Technology (petument Development (ASTID) | 28
54
97 | 18
7 | 64%
13%
18% | Heliophysics
Planetary Science | 94
148 | Approved amounts were \$1,695k, \$1,537k & \$1,267k in FY9, 10, & 11 respectively. but the average planned per year awarded amount integrated over all four years is ~ 120 K | | 2007 S
2007 V
2007 A | strobiology Science and Technology Instrument Development (ASTID)
strobiology: Exobiology and Evolutionary Biology
assirii Data Analysis | 97
113
77 | 17
33
41 | 18%
29%
53% | Planetary Science
Planetary Science
Planetary Science | | Avg of 471 K total if funded for all three years as budgeted. | | 2007 S
2007 V
2007 A
2007 A
2007 A | | 58 | 27 | 47% | Planetary Science | | Does not include PME. \$4.151 M in new awards, \$14.4 M total awarded in 2007 | | 2007 S
2007 V
2007 A
2007 A
2007 A
2007 C
2007 C | cosmochemistry
liscovery and Scout Mission Capabilities Expansion | 40 | 9 | 23% | Planetary Science | 260 | Total value of the selected proposals: ~\$2.3M | | 2007 S
2007 V
2007 A
2007 A
2007 A
2007 C
2007 C
2007 C
2007 C
2007 C | iscovery and Scout Mission Capabilities Expansion iscovery
Data Analysis ellowships for Early Career Researchers | | 9
15 | 23%
50% | Planetary Science
Planetary Science
Planetary Science | 260 | Total value of the selected proposals: ~\$2.3M | | 2007 S
2007 V
2007 A
2007 A
2007 C
2007 C
2007 C
2007 C
2007 C
2007 C
2007 C
2007 C | liscovery and Scout Mission Capabilities Expansion
liscovery Data Analysis | 40 | 9
15
24
43 | | Planetary Science
Planetary Science | 260 | Total value of the selected proposals: ~\$2.3M. Program officer notes that \$2,051,942 was total for an average of \$138,796 per award. "This is a little high due to | | 2007
2007
2007 | Mars Instrument Development Project | 63 | 7 | 11% | Planetary Science | 450 | 4 remain selectable. The 7 awards are worth a total of \$9.2M over three years, with an average of \$450,000 each | |--|--|--|--|--|--|---|---| | | Mars Instrument Development Project Moon and Mars Analog Mission Activities (MMAMA) Near Earth Object Observations (NEOO) | 21
18 | 11
3 | 17% | Planetary Science
Planetary Science | 63
304 | 364 is the average for all awards old and new |
 2007
2007
2007 | Outer Planets Research Planetary Astronomy (PAST) | 120
61
81 | 44
34
27 | 37%
56%
33% | Planetary Science
Planetary Science
Planetary Science | 85
83
104 | 11 more awards were selected on 2/6/2009, bringing the total up to 44/120. These were the "geophysics portion" of 103 is the average for all awards old and new | | 2007 | Planetary Atmospheres (PATM)
Planetary Geology and Geophysics (PGG)
Planetary Instrument Definition and Development | 120 | 40
15 | 33% | Planetary Science
Planetary Science | 97 | The start of 2 awards delayed until Year 2 | | 2007 | Planetary Protection Research Sample Return Laboratory Instruments and Data Analysis | 13 | 5 | 38% | Planetary Science
Planetary Science | 120
366 | Total value of the selected proposals ~ 2.6 M | | 2006 | Astrophysics Research and Analysis Astrophysics Research and Analysis | 99 | 35
39 | | Astrophysics
Astrophysics | 550 | | | | Astrophysics Research and Analysis
Astrophysics Theory Program | 179
118 | 55
20 | | Astrophysics
Astrophysics | 298
99 | There were two versions of this in ROSES-2006 | | 2006
2006 | Beyond Einstein Foundation Science
FUSE Guest Investigator Cycle 8 | 56
108 | 12
68 | 21%
63% | Astrophysics
Astrophysics | 135 | | | 2006
2006 | GALEX Guest Investigator Cycle 3
Origins of Solar Systems (Astro) | 76
20 | 32
9 | 42%
45% | Astrophysics
Astrophysics | | | | 2006
2006 | Suzaku Guest Observer Cycle 2
Swift Guest Investigator Cycle 3 | 156
88 | 81
45 | 52%
51% | Astrophysics
Astrophysics | 28 | (US Pls only) | | 2006 | Applied Information Systems Research Concept Studies for Lunar Sortie Science Opportunities | 160
77 | 33
14 | 21%
18% | Cross division
Cross division | 100 | | | 2006
2006 | History of Scientific Exploration of Earth and Space Opportunities in Science Mission Directorate Education and Public Outreach | 41
80 | 12
16 | 29%
20% | Cross division
Cross division | | | | 2006 | Advancing Collaborative Connections for Earth System Science (ACCESS) Almospheric Composition: Modeling and Analysis | 14
64 | 13 | 14%
20% | Earth Science
Earth Science | 138 | Selected 10/30/06 The average grant size is: \$137878, \$146822, \$144376, per year for the next three years For ROSES06 selection | | 2006 | Atmospheric Composition: Research and Modeling-A (Ground Net.) Atmospheric Composition: Research and Modeling-B Atmospheric Composition: Tropical Composition. Cloud. and Climate Coupling Experiment (TC | 19
51 | 6
20 | 32%
39%
71% | Earth Science
Earth Science | | Selected 12/8/06 Selected 2/7/07. First year funding | | 2006
2006
2006 | Aemospheric Composition: Iropical Composition, Cloud, and Climate Colipting Experiment (10
Earth System Science Research using Data and Products from TERRA, AQUA and ACRIM St
GNSS Remote Sensing Science Team | 79
322
18 | 56
125 | 39%
39% | Earth Science
Earth Science
Earth Science | 200 | approximate | | 2006 | Interdisciplinary Research in Earth Science International Polar Year | 127 | 33
34 | 26%
37% | Earth Science
Earth Science | | Selected 12/6/08
Selected 5/17/07 | | 2006 | International Polar Year Education and Public Outreach Making Earth System data records for Use in Research Environment | 24
86 | 9 29 | 38% | Earth Science
Earth Science | 100 | Selected 5/17/07. Second year funding | | 2006
2006 | Ocean Biology and Biogeochemistry Precipitation Science | 28
127 | 12
55 | 43%
43% | Earth Science
Earth Science | | Selected 6/4/07
Selected 10/30/06 | | 2006
2006 | Recompetition of the GRACE Science Team
Geospace Science | 32
94 | 22
24 | 69%
26% | Earth Science
Heliophysics | 136 | | | 2006
2006 | Heliophysics Guest Investigators Heliophysics Guest Investigators | 92
96 | 26
25 | 28%
26% | Heliophysics
Heliophysics | 106 | geospace only
solar only | | 2006
2006 | International Heliophysical Year Research
Living With a Star Targeted Research and Technology | 29
150 | 9
42 | 31%
28% | Heliophysics
Heliophysics | | | | 2006
2006 | Living with a Star Targeted Research and Technology: Strategic Capability
Solar and Heliospheric Physics | 7
118 | 1
33 | 14%
28% | Heliophysics
Heliophysics | | | | 2006
2006
2006 | Virtual Observatories for Heliophysics Data
Astrobiology: Exobiology and Evolutionary Biology | 33
103
71 | 13
23
27 | 39%
22%
38% | Heliophysics
Planetary Science | 82
117
95 | | | 2006
2006 | Cassini Data Analysis Cosmochemistry | 75
41 | 36
24 | 48%
59% | Planetary Science
Planetary Science
Planetary Science | 127
92 | | | 2006 | Discovery Data Analysis
Mars Data Analysis
Mars Fundamental Research (MFRP) | 41
100
126 | 24
23
35 | 23%
28% | Planetary Science
Planetary Science
Planetary Science | 92
83
89 | | | 2006
2006 | Mars Reconnaissance Orbiter Participating Scientists MESSENGER Mission Participating Scientists | 71
52 | 35
17
23 | | Planetary Science
Planetary Science
Planetary Science | 42
50 | | | 2006
2006 | MESSENSER MISSION Participaning Scientists Near Earth Object Observations (NEOO) Origins of Solar Systems (Planetary) | 14
73 | 5
25 | 36%
34% | Planetary Science
Planetary Science | 344
62 | | | 2006
2006 | Origins of Sorar Operatins (Hairbeary) Outer Planets Research Planetary Astronomy (PAST) | 51
52 | 13
19 | 25%
37% | Planetary Science
Planetary Science | 98
79 | | | 2006
2006 | Planetary Almospheres (PATM) Planetary Geology and Geophysics (PGG) | 63
99 | 21 | 33%
48% | Planetary Science
Planetary Science | 108
67 | | | 2006
2006 | Planetary Instrument Definition and Development Planetary Protection Research | 104
22 | 18 | 17%
18% | Planetary Science
Planetary Science | 231
130 | | | 2006
2006 | Sample Return Laboratory Instruments and Data Analysis Stardust Sample Analysis | 18
30 | 6
22 | 33%
73% | Planetary Science
Planetary Science | 472
107 | | | 2005
2005 | Astro E2/Suzaku Guest Observer – Cycle 1 Resolicitation Astrophysics Research and Analysis | 158
160 | 59
45 | 28% | Astrophysics
Astrophysics | | | | 2005
2005 | Astrophysics Theory Program Beyond Einstein Foundation Science | 128
54 | 20
6 | 16%
11% | Astrophysics
Astrophysics | 89
118 | | | 2005
2005 | Concept Studies for the Joint Dark Energy Mission FUSE Guest Investigator – Cycle 7 | 6
81 | 3
49 | 60% | Astrophysics
Astrophysics | | | | 2005
2005
2005 | GAL EX Guest Investigator Cycle 2 Rossi X-ray Timing Explorer Guest Observer Cycle 11 Swift Guest Investigator Cycle 2 | 64
131
67 | 25
59 | 39%
45%
49% | Astrophysics
Astrophysics | | | | 2005
2005
2005 | Swift Guest Investigator - Cycle 2 Terrestrial Planet Finder / Foundation Science Terrestrial Planet Finder Coronagraph / Instrument Concept Studies | 67
25
13 | 33 | 12% | Astrophysics
Astrophysics | | | | 2005 | Terrestrial Planet i Inder Coronagraph / Instrument Concept Studies Applied Information Systems Research Interdisciplinary Exploration Science | 174
100 | 33 | 38%
19%
3% | Astrophysics
Cross division
Cross division | | | | 2005 | Origins of Solar Systems Advanced Component Technology | 98
92 | 31
14 | 32%
15% | Cross division Earth Science | 66 | | | 2005 | Advanced Information Systems Technology Advanced Information Systems Technology Advancing Collaborative Connections for Earth-Sun System Science | 99 | 28 | 28%
32% | Earth Science
Earth Science | | Selected 6/21/06
Selected 10/14/05 | | 2005 | Almospheric Composition- A (Ozone Monitoring Instrument; OMI) Almospheric Composition- R (Kinetics) | 12
23 | 8
16 | 67%
70% | Earth Science
Earth Science | 113
188 | Selected 3/31/06
Selected 11/14/05 | | 2005
2005 | Almospheric Composition- C CloudSat and CALIPSO Science Team and Modeling/Analysis of A-Train Related Data | 67
120 | 30
40 | 45%
33% | Earth Science
Earth Science | 150 | Selected 3/31/06
Selected 5/22/07 | | 2005 | Decision Support through Earth-Sun Science Research Results Earth Surface and Interior | 94
71 | 33
35 | 35%
49% | Earth Science
Earth Science | 86 | Selected 4/7/06
Selected 8/1/07 | | 2005
2005 | ice Cloud and Land Elevation Satellite (ICESat) and Cryosat
Land Cover/Land Use Change (LCLUC) | 71
83 | 19
14 | 27%
17% | Earth Science
Earth Science | 143 | Selected 4/17/06
Selected 11/4/05. 83 Step-2 proposals were submitted, there were 173 Step-1. | | 2005
2005
2005 | Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) NASA African Monsoon Multidisciplinary Activities (NAMMA) | 37
49
50 | 22
23
5 | 59%
47%
10% | Earth Science
Earth Science | 96 | Selected 9/1/05 Selected 3/31/06. The award amount is the average over 3 years Jack Kaye notes higher at start, then declining. | | | NASA Energy and Water Cycle Study (NEWS) New (Early Career) Investigator Program in Earth Science | 84
79 | 25
12 | 10%
30%
15% | Earth Science
Earth Science
Earth Science | 100 | Selected 12/29/06
Selected 5/8/06
Selected 6/29/06. | | 2005
2005
2005 | North American Carbon Program Ocean Biology and Biogeochemistry Ocean Vector Winds Science Team | 22
57 | 7 22 | 32%
39% | Earth Science
Earth Science | 243 | Selected 4/7/06 Selected 4/4/06 | | 2005 | Coeair vector within Science Feath Remote Sensing Science for Carbon and Climate Terrestrial Ecology and Biodiversity | 44
34 | 10 | 23% | Earth Science
Earth Science | 180 | Selected 4/4/06
Selected 4/17/06 | | 2005
2005 | Terrestrial Hydrology Geospace Science | 59
156 | 12
27 | 20%
17% | Earth
Science
Heliophysics | | Selected 5/1/07 | | 2005
2005 | Living With a Star Targeted Research and Technology
Living With a Star Targeted Research and Technology: NASA/NSF Partnership for Collaborati | 163
18 | 51
6 | 33% | Heliophysics
Heliophysics | | | | 2005 | Magnetospheric Multiscale Mission Interdisciplinary Science Teams Solar and Heliospheric Physics | 18
150 | 3
18 | 17%
12% | Heliophysics
Heliophysics | | | | 2005 | Virtual Observatories for Solar and Space Physics Data
2001 Mars Odyssey Participating Scientists | 17
24 | 11
16 | 67% | Heliophysics
Planetary Science | 48 | Funds sent out in FY 08 & 09 were \$1,952k & \$1,376k respectively | | 2005 | Astrobiology Science and Technology for Exploring Planets (ASTEP) | 88 | 0 | 0%
0% | Planetary Science | | | | 2005
2005 | Astrobiology Science and Technology Instrument Development (ASTID) | | | 0.0 | Planetary Science | | | | 2005
2005
2005
2005 | Astrobiology Science and Technology Instrument Development (ASTID) Astrobiology: Exobiology and Evolutionary Biology Cosmochemistry | 160
84 | 28
43 | 18%
51% | Planetary Science
Planetary Science | 133
130 | | | 2005
2005
2005
2005
2005
2005
2005 | Astrobiology Science and Technology instrument Development (ASTID) Astrobiology Exobiology and Evolutionary Biology Cosmochemistry Discovery Data Analysis Mars Data Analysis | 160
84
21
96 | 43
14
27 | 18%
51%
67%
28% | Planetary Science
Planetary Science
Planetary Science
Planetary Science | 133
130
93
67 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Astrobiology Science and Technology Instrument Development (ASTIO) Astrobiology Endology and Evolutionary Biology Coamondemistry Oscionery Data Analysis Sciencery Data Analysis Mars Exportation Rowers MER: Participating Scientists Mars Exportation Research (MERP) | 160
84
21 | 43
14 | 18%
51%
67%
28%
23%
31%
50% | Planetary Science
Planetary Science
Planetary Science | 133
130
93 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Asorbobiogy Science and Technology Instrument Development (ASTID) Astrobiogy Excitogy and Evolutionary Biology Cosmo-Chemistry Boscowery Data Analysia Nata Nata Nata Nata Nata Nata Nata | 160
84
21
96
35
120 | 43
14
27
8 | 18%
51%
67%
28%
23%
31%
50% | Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science
Planetary Science | 133
130
93
67
90
80 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Assobiology Science and Technology Instrument Development (ASTID) Astrobiology Exoblogy and Evolutionary Biology Cosmochemistry Mars Clad Analysis Analysi | 160
84
21
96
35
120
10
81
38
84 | 43
14
27
8
37
5
29
23
29
58 | 18%
51%
67%
28%
23%
31%
50%
36%
61%
35%
48% | Planetary Science | 133
130
93
67
90
80
257
81
89
104 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Association, Science and Technology Instiguent Development (ASTO) Association, Science and Technology and Evolutions (ASTO) Discovery Data Analysis Back Data Analysis Back Data Data Back Da | 160
84
21
96
35
120
10
81
38
84
121
100
11 | 43
14
27
8
37
5
29
23
29
58
10
2 | 18%
51%
67%
28%
23%
31%
50%
36%
61%
35%
48%
18% | Planetary Science | 133
130
93
67
90
80
257
81
91
104
67
234 | | | 2005
2006
2006
2005
2005
2005
2005
2006
2005
2005 | Association, Science and Technology Instrument Development (ASTID) Association, Excluding and Evaluationary Biology Science and Science and Evaluation and Science Scienc | 160
84
21
96
35
120
10
81
38
84
121
100
11
12
84 | 43
14
27
8
37
5
29
23
29
58
10
2
6 | 18%
51%
67%
28%
23%
31%
50%
36%
61%
35%
48%
10%
18%
50% | Planetary Science | 133
130
93
67
90
80
257
81
89
104
67 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Associationy Science and Technology Instrument Development (ASTID) Associationy, Evolutiony and Evolutionary Biology Sciences and Scien | 160
84
21
96
35
120
10
81
38
84
121
100
11
12
84
163 | 43
14
27
8
37
5
5
29
23
29
58
10
2
6
23
6
23 | 18%
51%
67%
28%
23%
31%
50%
36%
61%
35%
48%
10%
50%
27%
42%
20% | Planetary Science Sc | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Aserbobiogy Science and Technology Instrument Development (ASTID) Askrobiogy Exciding and Evolutionary Biology Cosmochemistry Man Exportance (Astronomy Biology Astronomy Biology Man Exportance Rowers (MER) Participating Scientists Mans Exportance Rowers (MER) Participating Scientists Mans Exportance Rowers (MER) Note Cash Object Closervollania (MECO) Participating Scientists Man Exportance (MECO) Participating Management (PATR) | 160
84
21
96
35
120
10
81
38
84
121
100
11
12
84
121
163
111
69 | 43
14
27
8
37
5
29
23
29
58
10
2
6
6
23
69
22
16 | 18% 51% 67% 28% 28% 31% 50% 51% 61% 35% 48% 10% 50% 22% 28% 31% 50% 50% 27% 48% 50% 22% 20% 23% 31% 50% 51% 50% 51% 50% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51 | Planetary Science Astrophysics Astrophysics Astrophysics Astrophysics Astrophysics | 133
130
93
677
90
80
257
81
89
104
67
234
130
266 | | | 2006
2006
2005
2005
2005
2005
2005
2005 | Association, Science and Technology Instrument Development (ASTID) Association, Excluding and Evaluations (ASSIGN) Boscown (ASSIGN) and Evaluations (ASSIGN) Boscown (ASSIGN) and Assign Bo | 160
84
21
96
35
120
10
81
38
84
121
100
11
12
84
163
111
163
111
163
111
163
163 | 43
14
27
8
37
5
29
23
29
58
10
2
6
6
23
69
22
24
58
58
10
26
58 | 18%
67%
28%
29%
31%
50%
61%
36%
61%
35%
48%
10%
48%
20%
22%
22%
35%
35%
48% | Planetary Science Astrophysics | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Associationy Science and Technology Instrument Development (ASTIO) Associationy, Excluding and Evaluationary Biology Discovery Data Analysis Mans Mans Data Analysis Mansophysics Theory Department Mansophysics Theory Popartm Mansophysics Theory Popartment Theo | 160
84
21
96
35
120
10
81
120
10
81
121
100
11
12
84
163
111
169
143 | 43
14
27
8
37
5
29
23
29
23
29
20
6
6
22
26
6
6
22
26
6
9
22
26
6
9
26
9
9
9
9 | 18%
51%
67%
28%
23%
31%
50%
61%
36%
61%
36%
48%
10%
10%
27%
42%
22%
23%
31% | Planetary Science Astrophysics | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2005
2006
2006
2005
2005
2005
2005 | Associationy, Science and Technology instrument Development (ASTIO) Associationy, Evology and Evolutionary Biology Sciences and Science | 160
84
21
96
35
120
10
81
121
100
111
12
84
163
111
163
111
163
163
163
163 | 43
14
27
8
37
5
29
23
29
58
10
2
6
6
23
69
22
24
58
58
10
26
58 | 18%
51%
67%
28%
23%
31%
50%
36%
46%
10%
27%
42%
22%
52%
52%
52%
52%
52%
52%
52%
52%
5 | Planetary Science Sc | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Association, Science and Technology Instiguent Development (ASTIO) Association, Science and Technology and Evolutions (ASTIO) Association, Science and Evolutions (ASTIO) Discovery Disk Analysis May Dis | 160 84 84 21 96 81 83 84 84 121 100 111 112 84 163 111 163 86 86 150 150 150 150 150 150 150 150 150 150 | 43
14
27
8
37
5
5
29
23
29
23
29
6
6
2
2
6
45
5
5
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 18% 51% 67% 52% 23% 31% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50 | Planetary Science Astrophysics Astrophys | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2006
2006
2006
2006
2006
2006
2006 | Association, Science and Technology Instrument Development (ASTID) Association, Excluding and Evaluations (ASSID) Society (ASS | 160 84 84 21 96 85 87 87 87 87 87 87 87 87 87 87 87 87 87 | 43
14
27
8
8
37
5
29
23
29
58
10
2
2
2
2
3
29
58
10
2
2
3
6
9
2
2
16
4
5
5
5
5
5
6
6
7
7
8
7
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 18%
67%
67%
28%
23%
31%
50%
50%
61%
35%
48%
10%
50%
22%
22%
35%
42%
42%
42%
42%
42%
43%
45%
45%
45%
45%
45%
45%
45%
45 | Planetary Science
Sc | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2006
2006
2006
2006
2006
2006
2006 | Associationy Science and Technology Instrument Development (ASTID) Associationy, Excisiony and Evaluations (1998) Society (1998) and Evaluations (1998) Society (1998) and Evaluations (1998) Society (1998) and Evaluations (1998) Man Explorations (1998) Evaluations (1998) Man Explorations Exploration (1998) Man | 160 84 21 96 35 35 120 10 10 11 121 121 122 138 84 121 100 11 11 12 14 163 111 169 143 101 150 1 | 43
14
27
8
8
37
65
29
23
29
58
10
2
6
23
69
22
22
25
69
22
29
69
99
90
90
90
90
90
90
90
90
9 | 18% 51% 67% 28% 29% 19% 19% 19% 19% 19% 19% 19% 19% 19% 1 | Punetay Science Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Science Earth Scien | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005
2005
2005
2005
2005
2005
2005
2005 | Association, Science and Technology Instrument Development (ASTIO) Association, Evolution and Evolutions (ASSOC) Science and Science and Technology Instrument Development (ASTIO) Science and | 160
84
21
21
26
35
120
10
11
12
84
121
121
121
143
141
143
143
143
15
16
17
18
18
18
18
18
18
18
18
18
18 | 43
14
27
8
37
5
29
23
29
58
10
2
6
23
69
22
16
5
5
69
22
16
69
23
69
29
69
69
41
11
59
69
69
69
69
69
69
69
69
69
6 | 18% 51% 67% 65% 65% 65% 65% 65% 65% 65% 65% 65% 65 | Punetay Science Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Astrochysica Science Earth Scien | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Association, Science and Technology Instalment Development (ASTIO) Association, Evolution and Evolutionary Biology Discovery Data Analysis Mans Manalysis Mans Mans Data Manalysis Mans Data Mans Mans Data Manalysis Mans Data Mans Mans Data Manalysis Mans Data Mans Mans Data Mans Mans Mans Mans Mans Mans Mans Man | 160 84 21 96 84 21 96 85 86 86 86 86 86 86 86 86 86 86 86 86 86 | 43
14
27
8
37
55
29
58
10
2
2
6
6
23
2
6
6
6
2
3
6
6
9
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 18% 51% 67% 65% 65% 65% 65% 65% 65% 65% 65% 65% 65 | Punetay Science Astrochysics Advorphysics Astrochysics Science Earth | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbidology Science and Technology Instiguent Development (ASTO) Asarbidogy, Eschology Boscowery Dala Gradinary and Evolutionary Boscowery Boscowery Dala Analysis Asarb As | 160 84 21 96 35 120 120 120 120 120 120 120 120 120 120 | 43
14
27
8
37
55
29
58
10
20
22
6
6
23
23
29
58
10
20
21
6
6
6
9
22
10
10
20
21
10
21
21
21
21
21
21
21
21
21
21
21
21
21 | 18% 51% 67% 51% 55% 68% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50 | Punetay Science Autocophysics | 133
130
67
90
80
257
81
89
104
67
234
41
130
266 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarboikog Seinen aur d'arboikog instiguent Development (ASTD) Asarboikog Seinen aur d'arboikog instiguent (ASTD) Asarboikog Seinen aur de Voulenant (ASTD) Decembro Data Analysis Man Euglochen (ASTD) Asarboikog Seinen (AS | 160
160
160
160
160
160
160
160 | 43
14
27
8
33
5
5
5
5
23
29
29
58
10
2
2
16
45
5
5
6
2
7
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | 18% 51% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67 | Punetay Science Association of the Science Sci | 1333
933
67
930
800
2257
81
104
40
172
234
130
107
117 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Association, Science and Technology Instituted Development (ASTIO) Association, Science and Technology Instituted (ASTIO) Association, Science and Technology and Evaluations (ASTIO) Science and Astion (ASTIO) Astronomy and Ast | 100 84 21 35 35 35 35 35 35 35 35 35 35 35 35 35 | 43
14
27
8
3
3
5
5
29
29
56
69
22
16
69
22
16
69
22
16
45
5
5
5
69
22
16
69
22
23
69
69
22
16
69
23
24
16
45
5
5
5
5
6
6
6
7
7
8
7
8
8
8
8
8
8
8
8
8
8
8
8
8 | 18% 51% 51% 55% 55% 55% 55% 55% 55% 55% 55 | Punelay Science Autocybricia Autocybricia Autocybricia Autocybricia Autocybricia Autocybricia Autocybricia Autocybricia Autocybricia Charles Science Earth | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Associationy Science and Technology Instalment Development (ASTID) Associationy, Excisiony and Evaluations (1999) Successive Succes | 100 84 271 385 385 385 385 385 385 385 385 385 385 | 43
14
27
5
5
29
29
29
20
20
20
20
20
20
20
20
20
20 | 18% 51% 52% 52% 33% 33% 35% 46% 46% 10% 18% 25% 46% 10% 18% 18% 18% 18% 18% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19 | Punetay Science Montage Science Montage Science Promoting Science Promoting Science Planetay Associated Science Sc | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbology, Science and Technology Instagrant Development (ASTD) Asarbology, Science and Technology Instagrant Development (ASTD) Decompt Data Analysis Man Mandary Manuschia Research (MEG) Penetisty Obeology and Geophysics (POG) Penetisty Obeology and Geophysics (POG) Penetisty Obeology and Geophysics (POG) Manuschy Manuschia (Med) Manuschia Manu | 100 84 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86 | 43
14
27
87
57
57
59
29
23
29
26
69
22
2 2
2 2
2 3
69
23
69
24
45
45
45
45
45
46
47
48
49
49
40
40
40
40
40
40
40
40
40
40 | 18% 55% 55% 55% 55% 55% 55% 55% 55% 55% 5 | Punelay Science Scienc | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Association, Science and Technology Instrument Development (ASTID) Association, Science and Technology Instrument Development (ASTID) Association, Science and Sci | 160 84 84 271 85 85 85 85 85 85 85 85 85 85 85 85 85 | 43
14
14
27
5
5
5
6
6
10
10
10
10
10
10
10
10
10
10 | 105, 1275,
1275, 1 | Punetay Science Association of the Science Sci | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Associationy, Science and Technology Instituted Development (ASTID) Associationy, Evolopment and Evolutiony (ASSOC) Science and Association (ASSOCIATION) (ASSOCIA | 160 84 27 28 38 38 38 38 38 38 38 38 38 38 38 38 38 | 43 14 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | 185, 187, 187, 187, 187, 187, 187, 187, 187 | Punelay Science Myndely Science Myndely Science Myndely Science Myndely Science Myndely Science Plantaly Astrochysics Astroc | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Associationy, Science and Technology Instituted Development (ASTIO) Associationy, Evolopment and Evolutiony (Astiony) Science and | 160 4 221 4 3 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 | 43
14
14
14
15
17
18
18
18
18
18
18
18
18
18
18 | 185, 187, 187, 187, 187, 187, 187, 187, 187 | Punelay Science Myndely Science Myndely Science Myndely Science Myndely Science Myndely Science Plantaly Astrochysics Astroc | 1333 1331 1331 1331 1331 1331 1331 133 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbidology Science and Technology Instiguent Development (ASTIO) Asarbidology Excision and Evaluation of Science Association (ASTIO) Discovery Data Analysis and Evaluation of Science Association (ASTIO) Discovery Data Analysis and Development | 160 84 22 35 35 37 37 37 32 22 35 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 43
14
14
14
17
18
19
19
19
19
19
19
19
19
19
19 | 185, 187, 187, 187, 187, 187, 187, 187, 187 | Punelay Science Autocopyrica Autoc | 133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbidosigo Science and Technology Instrument Development (ASTID) Asarbidosigo Science and Technology Instrument Development (ASTID) Asarbidosigo Science and Science Asarbidosigo | 160 M | 43 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 185, 225, 225, 225, 225, 225, 225, 225, 2 | Punetay Science Scienc | 1333 933 133 133 133 133 133 133 133 133 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbolisopy Science and Technology Instrument Development (ASTID) Asarbolisopy Science and Technology Instrument Development (ASTID) Asarbolisopy Science and Sci | 160 44 54 54 54 54 54 54 54 54 54 54 54 54 | 431 27 27 28 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38 | 195, 197, 197, 197, 197, 197, 197, 197, 197 | Punetay Science Astrocytysics As | 1333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Associationy, Science and Technology Instiguent Development (ASTIO) Associationy, Evolopment and Evolutiony (Astional States) Society (Astional States) Asta Technology and Evolutions (Astional States) Asta Technology Astrophysics (Astrophysics) (Astrophys | 160 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 43
22
27
28
27
28
29
29
29
29
20
20
20
20
20
20
20
20
20
20 | 195, 197, 197, 197, 197, 197, 197, 197, 197 | Pinntalny Science Mynosis Science Mynosis Science Mynosis Science Mynosis Science Mynosis Science Mynosis Science Plantalny Planta | 1333 933 133 133 133 133 133 133 133 133 | | | 2005 2005 2005 2005 2005 2005 2005 2005 | Asarbology, Science and Technology Instagrant Development (ASTD) Asarbology, Science and Technology Instagrant Chevology Discovery Data Analysis Asarbology, Science and Science Asarbology Discovery Data Analysis Asarbology, Science Sc | 160 44 43 43 43 43 43 43 43 43 43 43 43 43 | 43 1 44 1 45 1 45 1 45 1 45 1 45 1 45 1 | 195, 197, 197, 197, 197, 197, 197, 197, 197 | Punetay Science Punetay Puneta | 1333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | 2003 | FUSE Guest Investigator - Cycle 5 | 168 | 62 | 37% | Astrophysics | | | |------|---|-----|-----|-----|-------------------|-----|--| | 2003 | Long Term Astrophysics | 94 | 17 | 18% | Astrophysics | | | | 2003 | Swift Guest Investigator - Cycle 1 | 63 | 35 | 56% | Astrophysics | | | | 2003 | Terrestrial Planet Finder | 45 | 16 | 36% | Astrophysics | | | | 2003 | Space Science Vision Missions | 27 | 15 | 56% | Cross division | | | | 2003 | Earth System Science Research using Data and Products from TERRA, AQUA and ACRIM St | 566 | 199 | 35% | Earth Science | | | | 2003 | Interdisciplinary Science in the NASA Earth Science Enterprise | 346 | 60 | 17% | Earth Science | | | | 2003 | New (Early Career) Investigator Program in Earth Science | 126 | 31 | 25% | Earth Science | | | | 2003 | The Ocean Surface Topography Science Team (OST/ST) | 80 | 43 | 54% | Earth Science | | | | 2003 | Advanced Information Systems Research | 123 | 33 | 27% | Heliophysics | | | | 2003 | Geospace Sciences LCAS | 27 | 11 | 41% | Heliophysics | | | | 2003 | Geospace Sciences SR&T | 95 | 24 | 25% | Heliophysics | | | | 2003 | Living With a Star Targeted Research and Technology | 187 | 52 | 28% | Heliophysics | | | | 2003 | SEC Guest Investigators | 82 | 33 | 40% | Heliophysics | | | | 2003 | Solar and Heliospheric Physics | 119 | 25 | 21% | Heliophysics | | | | 2003 | Advanced Electric Propulsion | 9 | 2 | 22% | Planetary Science | | | | 2003 | Astrobiology Science and Technology for Exploring Planets (ASTEP) | 35 | 10 | 29% | Planetary Science | | | | 2003 | Astrobiology Science and Technology Instrument Development (ASTID) | 47 | 20 | 43% | Planetary Science | | | | 2003 | Astrobiology: Exobiology and Evolutionary Biology | 105 | 44 | 42% | Planetary Science | | | | 2003 | Cosmochemistry | 66 | 36 | 55% | Planetary Science | 140 | | | 2003 | Discovery Data Analysis | 25 | 16 | 64% | Planetary Science | | | | 2003 | High Capability Instruments for Planetary Exploration | 29 | 11 | 38% | Planetary Science | | | | 2003 | Mars Data Analysis | 85 | 37 | 44% | Planetary Science | | | | 2003 | Mars Exploration Advanced Technologies | 131 | 60 | 46% | Planetary Science | | | | 2003 | Near Earth Object Observations (NEOO) | 15 | 7 | 47% | Planetary Science | | | | 2003 | Origins of Solar Systems (Planetary) | 85 | 19 | 22% | Planetary Science | | | | 2003 | Planetary Astronomy (PAST) | 65 | 30 | 46% | Planetary Science | | | | 2003 | Planetary Atmospheres (PATM) | 80 | 44 | 55% | Planetary Science | | | | 2003 | Planetary Data System Nodes NRA | 7 | 5 | 71% | Planetary Science | | | | 2003 | Planetary Geology and Geophysics (PGG) | 115 | 62 | 54% | Planetary Science | | | | 2003 | Planetary Instrument Definition and Development | 58 | 15 | 26% | Planetary Science | | | | 2003 | Planetary Protection Research | 10 | 2 | 20% | Planetary Science | | | | 2003 | Sample Return Laboratory Instruments and Data Analysis | 21 | 9 | 43% | Planetary Science | | |